Effect of Different Thicknesses of ZnS Thin Films on its Optical and Structural Properties

2014 ◽  
Vol 556-562 ◽  
pp. 185-188
Author(s):  
Shu Wang Duo ◽  
Huan Ke ◽  
Ting Zhi Liu ◽  
Hao Zhang

ZnS films have been deposited on glass by chemical bath deposition (CBD). The optical and structural properties were analyzed by UV-VIS spectrophotometer and X-ray diffraction (XRD). The results showed that different sides of glass substrate have different thicknesses of the ZnS thin films, which can affect the optical and structural properties of ZnS thin films. The ZnS films of the side of glass substrates back to the solution center are thicker than that of the other side, and the ZnS films from ZnSO4 are thicker than that from Zn (NO3)2. The transmittances lower with the thicknesses of ZnS films increasing. The band gaps exhibit blue response with the thicknesses of ZnS films increasing. From the sides of glass substrates back to the solution center, the (111) reflection of the sphalerite structure can be observed at about 2θ=29.1°, while from the other side toward the solution center showed no significant peak.

2013 ◽  
Vol 591 ◽  
pp. 297-300
Author(s):  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang ◽  
Xiao Yan Fei

ZnS films have been deposited on glass substrates by chemical bath deposition (CBD). The optical and structural properties were analyzed by UV-VIS spectrophotometer and X-ray diffraction (XRD). The results showed that the prepared thin films from the solution using N2H4 as second complexing agent were thicker than those from the solution without adding N2H4 in; this is due to using second complexing agent of N2H4, the deposition mechanisms change which is conductive to heterogeneous deposition. When using N2H4 as second complexing agent, the crystallinity of ZnS thin films improved with a significant peak at 2θ=28.96°which can be assigned to the (111) reflection of the sphalerite structure. The transmittances of the prepared films from the solution adding N2H4 in as second complexing agent were over 85%, compared to those from the solution without N2H4 (over 95%). The band gaps of the ZnS films from the solution using N2H4 as second complexing agent were larger (about 4.0eV) than that from those from the solution without N2H4 (about 3.98eV), which indicated that the prepared ZnS films from the solution adding N2H4 in as second complexing agent were better used as buffer layer of solar cells with adequate optical properties. In short, using N2H4 as second complexing agent, can greatly improve the optical and structural properties of the ZnS thin films.


2013 ◽  
Vol 281 ◽  
pp. 523-526 ◽  
Author(s):  
Liyang Yan Chen ◽  
Chao Fang

Zinc sulfide (ZnS) quantum thin films have been deposited from precursors with a variety of OH- concentration onto microscope glass substrates by chemical bath deposition method. The growth and structural properties have been investigated. XRD patterns of ZnS films obtained from acidic solution showed a favorable wurtzite structure, while for those obtained from alkaline solution, showed a sphalerite structure. The growth studied of the deposited films has also shown that the OH- played a vital role in nucleation and the film growth.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
H. B. Patil ◽  
S. V. Borse

Semiconducting thin films of ternary () have been deposited on glass substrate by the simple and economical chemical bath deposition method. We report the deposition and optimization of the solution growth parameters such as temperature, complexing agent, thiourea, and deposition time that maximizes the thickness of the deposited thin film. The X-ray diffraction deposited thin films having cubic structure. The thin films were uniform and adherent to substrate. The composition was found homogeneous and stoichiometric by EDAX analysis.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2016 ◽  
Vol 19 (1) ◽  
pp. 015-019 ◽  
Author(s):  
Jebadurai Joy Jeba Vijila ◽  
Kannusamy Mohanraj ◽  
Sethuramachandran Thanikaikarasan ◽  
Ganesan Sivakumar ◽  
Thaiyan Mahalingam ◽  
...  

Thin films of CuSbS2 have been deposited on ultrasonically cleaned glass substrates using a simple chemical bath deposition technique. Prepared films have been characterized using X-ray diffraction, Field Emission Scanning Electron Microscopy and UV-Vis-NIR spectroscopic techniques, respectively. X-ray diffraction analysis revealed that the prepared films possess polycrystalline in nature with orthorhombic CuSbS2 in addition to secondary phase of monoclinic Cu3SbS3 and cubic Cu12Sb4S13 for different copper concentrations. Field Emission Scanning Electron Spectroscopic analysis showed that the prepared films possess spherical shaped grains with irregular shaped clusters. Optical absorption analysis showed that the prepared films possess band gap value in the range between 1.7 and 2.4 eV.


Sign in / Sign up

Export Citation Format

Share Document