Real-Time Detection of the Flexible Needle Shape by Using Strain Gauges

2014 ◽  
Vol 556-562 ◽  
pp. 2906-2909
Author(s):  
Ji Chao Zhang ◽  
Wei Dong ◽  
Zhi Jiang Du

In flexible needle insertion procedures, the needle path tracking plays a crucial role in the trajectory control. In this paper, a methodology is proposed to detect the shape of the flexible needle in real time by using the strain gauge sensing. The curvature information of the flexible needle can be obtained based on the stain signal of the gauges which are glued on the needle body markers. Based on this basic approach, the trajectory of the needle can be calculated and displayed, which integrates the discrete markers curvature information. The work reported in this paper indicates a practical significance in the smart medical system implementation without medical imaging equipments.

Author(s):  
Abhishek Kamal ◽  
Vinayak Kulkarni ◽  
Niranjan Sahoo

Today, measurement of strain plays a crucial role in different areas of research such as manufacturing, aerospace, automotive industry, agriculture, and medical. Many researchers have used different types of strain transducers to measure strain in their relevant research fields. Strain can be measured using mainly two methods (i.e., electrical strain sensors and optical strain sensors). Electrical strain sensors consist basically of strain gauges, piezo film, etc. In electrical strain sensors, the strain gauge is one of the oldest and reliable strain sensors which are available in different types (i.e., wire strain gauge, foil strain gauge, and semiconductor strain gauge). Piezofilm is also playing an important role in the field of strain measurement due to easy availability and less cost.


2021 ◽  
pp. 147612702110120
Author(s):  
Siavash Alimadadi ◽  
Andrew Davies ◽  
Fredrik Tell

Research on the strategic organization of time often assumes that collective efforts are motivated by and oriented toward achieving desirable, although not necessarily well-defined, future states. In situations surrounded by uncertainty where work has to proceed urgently to avoid an impending disaster, however, temporal work is guided by engaging with both desirable and undesirable future outcomes. Drawing on a real-time, in-depth study of the inception of the Restoration and Renewal program of the Palace of Westminster, we investigate how organizational actors develop a strategy for an uncertain and highly contested future while safeguarding ongoing operations in the present and preserving the heritage of the past. Anticipation of undesirable future events played a crucial role in mobilizing collective efforts to move forward. We develop a model of future desirability in temporal work to identify how actors construct, link, and navigate interpretations of desirable and undesirable futures in their attempts to create a viable path of action. By conceptualizing temporal work based on the phenomenological quality of the future, we advance understanding of the strategic organization of time in pluralistic contexts characterized by uncertainty and urgency.


Author(s):  
J. Szwedowicz ◽  
S. M. Senn ◽  
R. S. Abhari

Optimum placements of the strain gauges assure reliable vibration measurements of structural components such as rotating blades. Within the framework of cyclic vibration theory, a novel approach has been developed for computation of the optimum gauge positions on tuned bladed discs regarding the determined sensitivity, orthogonality, gradient and distance criteria. The utilized genetic algorithm optimization tool allows for an effective numerical search of suitable solutions of the defined optimization function. A rotating impeller disc represented by a cyclic finite element model demonstrates the application of this method. The present technique can be easily applied to other structural components requiring optimal strain gauge instrumentation.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 10
Author(s):  
Qing Hong ◽  
Yifeng Sun ◽  
Tingyu Liu ◽  
Liang Fu ◽  
Yunfeng Xie

Background: Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly. Human action has a significant impact on the production safety and efficiency of a shop-floor, however, because of the high individual initiative of humans, it is difficult to realize real-time action detection in a digital twin shop-floor. Methods: We proposed a real-time detection approach for shop-floor production action. This approach used the sequence data of continuous human skeleton joints sequences as the input. We then reconstructed the Joint Classification-Regression Recurrent Neural Networks (JCR-RNN) based on Temporal Convolution Network (TCN) and Graph Convolution Network (GCN). We called this approach the Temporal Action Detection Net (TAD-Net), which realized real-time shop-floor production action detection. Results: The results of the verification experiment showed that our approach has achieved a high temporal positioning score, recognition speed, and accuracy when applied to the existing Online Action Detection (OAD) dataset and the Nanjing University of Science and Technology 3 Dimensions (NJUST3D) dataset. TAD-Net can meet the actual needs of the digital twin shop-floor. Conclusions: Our method has higher recognition accuracy, temporal positioning accuracy, and faster running speed than other mainstream network models, it can better meet actual application requirements, and has important research value and practical significance for standardizing shop-floor production processes, reducing production security risks, and contributing to the understanding of real-time production action.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Tony Thomas ◽  
Kyle Schulze

Abstract Printed electronics has found new applications in wearable electronics owing to the opportunities for integration, and the ability of sustaining folding, flexing and twisting. Continuous monitoring necessitates the production of sensors, which include temperature, humidity, sweat, and strain sensors. In this paper, a process study was performed on the FR4 board while taking into account multiple printing parameters for the direct-write system. The process parameters include ink pressure, print speed, and stand-off height, as well as their effect on the trace profile and print consistency using white light interferometry analysis. The printed traces have also been studied for different sintering conditions while keeping the FR4 board’s temperature limit in mind. The paper also discusses the effect of sintering conditions on mechanical and electrical properties, specifically shear load to failure and resistivity. The data from this was then used to print strain gauges and compared them to commercially available strain gauges. By reporting the gauge factor, the printed strain gauge has been standardized. The conductive ink’s strain sensing capabilities will be studied under tensile cyclic loading (3-point bending) at various strain rates and maximum strains. Long-term performance testing will be carried out using cyclic tensile loads.


2015 ◽  
Vol 798 ◽  
pp. 319-323
Author(s):  
Ali Reza Hassan Beiglou ◽  
Javad Dargahi

It has been more than 20 years that robot-assisted minimally invasive surgery (RMIS) has brought remarkable accuracy and dexterity for surgeons along with the decreasing trauma for the patients. In this paper a novel method of the tissue’s surface profile mapping is proposed. The tissue surface profile plays an important role for material identification during RMIS. It is shown how by integrating the force feedback into robot controller the surface profile of the tissue can be obtained with force feedback scanning. The experiment setup includes a 5 degree of freedoms (DOFs) robot which is equipped with a strain-gauge ball caster as the force feedback. Robot joint encoders signals and the captured force signal of the strain-gauge are transferred to developed surface transformation algorithm (STA). The real-time geometrical transformation process is triggered with force signal to identify contact points between the ball caster and the artificial tissue. The 2D surface profile of tissue will be mapped based on these contact points. Real-time capability of the proposed system is evaluated experimentally for the artifical tissues in a designed test rig.


2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


2014 ◽  
Vol 61 (2) ◽  
pp. 270-285 ◽  
Author(s):  
Michael Kleer ◽  
Andrey Gizatullin ◽  
Klaus Dreßler ◽  
Steffen Müller

Abstract The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.


2019 ◽  
pp. 50-56
Author(s):  
Людмила Володимирівна Кузьмич ◽  
Дмитро Петрович Орнатський ◽  
Володимир Павлович Квасніков

In the article, the principles of construction, design and mathematical modeling of deformation and stresses of complex technical constructions are developed with the help of strain gauges and strain gauges taking into account destabilizing factors, which allows to significantly reduce the level of errors in relation to existing measurement methods and known analogs.The method of digital compensation provides a more significant reduction in the errors of measuring transducers compared with the method of analog compensation. Features and technical indicators of this method are considered on an example of measuring pressure transducer with foil strain gauges.This method is universal, allows us to adjust not only the errors of the measurement channel nonlinearity and additional errors but also the errors associated with the effect of interferences of the general type due to ground resistance, which induces the connection between the measuring channels of the main and destabilizing factor.The disadvantages of this method include a significant amount of computations, which sharply increases with increasing order of approximating polynomials.The purpose is to develop a method and means of measuring stress-strain state using strain gauge, free from the above - mentioned shortcomings.The main destabilizing factors that limit the measurement accuracy using strain gauge are:- random processes (noises, obstacles, etc.);- changes in parameters of measuring transducers due to aging and physical degradation;- effects of external climatic and mechanical factors (temperature, humidity, etc.).The influence of the main destabilizing factors limiting the accuracy of the measurement of the stress-strain state of complex technical constructions with the help of strain gauges was analyzed, among which the influences of external climatic and mechanical factors are one of the most important ones. Regarding the systematic components, the most important in statistical measurements are the errors of nonlinearity and the temperature component of the error.For the study, two main alloys were taken, which today has the widest use as a material for strain gauges - it is constantan and karma. For these materials, the influence of the range of temperature changes, the spread of the values of temperature error on the mean-square value of the error of approximation by power polynomials was investigated.Using the NUMERY package, the dependence of the approximation error on the order of the approximating polyphony was determined. It is established that the mean square error value in the wide temperature range for both constantan and karma has a weak correlation with the order of a polynomial.


Sign in / Sign up

Export Citation Format

Share Document