Deformation Monitoring of Offshore Platform Using the Persistent Scatterer Interferometry Technique

2014 ◽  
Vol 567 ◽  
pp. 325-330 ◽  
Author(s):  
Abdul Nasir Matori ◽  
Amir Sharifuddin Ab Latip ◽  
Indra Sati Hamonangan Harahap ◽  
Daniele Perissin

One of the problems that occur during the exploitation of oil and gas is offshore platform deformation. It could occur due to the environments load as well as the extraction of oil and gas itself under the seabed that caused reservoir compaction. Offshore platform deformation may affect the platform structural integrity and cause loss of production, thus it is very important to monitor its occurrences. Offshore platform deformation monitoring has been carried out using the satellite-based Global Positioning System (GPS) technique until recently. Even though the technique has proven its worth for the job, it has however some limitations, the most prominent is it could only monitor selected portion of the offshore platform. Thus, this study presents an attempt of detecting and monitoring the deformation phenomenon of an offshore platform using the Persistent Scatterer Interferometry (PSI) technique. This technique would overcome some of the limitations of the previous (GPS) deformation monitoring technique. A total of 11 high resolution TerraSAR-X images (i.e., 3 m in StripMap mode) were acquired from Aug, 2012 to Apr, 2013 for this purpose, while one of the offshore platforms in South China Sea is being used as monitored platform. Preliminary results showed that detail and sensitive deformations could be detected by this technique. In addition, analysis results in the form of mean deformation velocity map and displacement time series would allow us to further understand the behaviour of offshore platform deformation.

Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 344 ◽  
Author(s):  
Núria Devanthéry ◽  
Michele Crosetto ◽  
Oriol Monserrat ◽  
María Cuevas-González ◽  
Bruno Crippa

Satellite earth observation enables the monitoring of different types of natural hazards, contributing to the mitigation of their fatal consequences. In this paper, satellite Synthetic Aperture Radar (SAR) images are used to derive terrain deformation measurements. The images acquired with the ESA satellites Sentinel-1 are used. In order to fully exploit these images, two different approaches to Persistent Scatterer Interferometry (PSI) are used, depending on the characteristics of the study area and the available images. The main processing steps of the two methods, i.e.; the simplified and the full PSI approach, are described and applied over an area of 7500 km2 located in Catalonia (Spain). The deformation velocity map and deformation time series are analysed in the last section of the paper.


2018 ◽  
Vol 34 ◽  
pp. 01019
Author(s):  
Khin Cho Myint ◽  
Abd Nasir Matori ◽  
Adel Gohari

Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.


Author(s):  
S. M. S. M. K. Samarakoon ◽  
R. M. Chandima Ratnayake ◽  
S. A. S. C. Siriwardane

Structural integrity control (SIC) is an increasingly important element of offshore structures. Not only is it used in newly built and existing offshore structures (e.g. oil and gas (O&G) production & process facilities (P&PFs), wind turbine installations, etc.), but SIC is also essential for ageing offshore platforms which are subjected to an extension of their design service life. In these cases, SIC programs must be performed to assess the platforms. If any significant changes in structural integrity (SI) are discovered, then it is essential to implement an appropriate strengthening, modification and/or repair (SMR) plan. Currently, welded and grouted repairs are mostly used for SMR. Although a welded repair may typically restore a structure to its initial condition, if the damage is due to fatigue loading and welded repairs have been carried out, then historical evidence reveals that there is a high potential for the damage to reappear over time. On the other hand, mechanical connections are significantly heavier than grouted connections. Consequently, grouted repairs are widely used to provide additional strength, for instance, to handle situations such as preventing propagation of a dent or buckle, sleeved repairs, leg strengthening, clamped repair for load transfer, leak sealing and plugging, etc. This manuscript examines current developments in grouted connections and their comparative pros and cons in relation to welded or mechanical connections. It also provides recommendations for future research requirements to further develop SMR with grouted connections.


2016 ◽  
Vol 100 ◽  
pp. 1121-1126 ◽  
Author(s):  
Núria Devanthéry ◽  
Michele Crosetto ◽  
María Cuevas-González ◽  
Oriol Monserrat ◽  
Anna Barra ◽  
...  

Author(s):  
A. M. H. Ansar ◽  
A. H. M. Din ◽  
A. S. A. Latip ◽  
M. N. M. Reba

Abstract. Technology advancement has urged the development of Interferometric Synthetic Aperture Radar (InSAR) to be upgraded and transformed. The main contribution of the InSAR technique is that the surface deformation changes measurements can achieve up to millimetre level precision. Environmental problems such as landslides, volcanoes, earthquakes, excessive underground water production, and other phenomena can cause the earth's surface deformation. Deformation monitoring of a surface is vital as unexpected movement, and future behaviour can be detected and predicted. InSAR time series analysis, known as Persistent Scatterer Interferometry (PSI), has become an essential tool for measuring surface deformation. Therefore, this study provides a review of the PSI techniques used to measure surface deformation changes. An overview of surface deformation and the basic principles of the four techniques that have been developed from the improvement of Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), which is Small Baseline Subset (SBAS), Stanford Method for Persistent Scatterers (StaMPS), SqueeSAR and Quasi Persistent Scatterer (QPS) were summarised to perceive the ability of these techniques in monitoring surface deformation. This study also emphasises the effectiveness and restrictions of each developed technique and how they suit Malaysia conditions and environment. The future outlook for Malaysia in realising the PSI techniques for structural monitoring also discussed in this review. Finally, this review will lead to the implementation of appropriate techniques and better preparation for the country's structural development.


2019 ◽  
Vol 11 (22) ◽  
pp. 2632 ◽  
Author(s):  
Arsalan Ahmed Othman ◽  
Ahmed F. Al- Maamar ◽  
Diary Ali Mohammed Al-Manmi ◽  
Veraldo Liesenberg ◽  
Syed E. Hasan ◽  
...  

On-going monitoring of deformation of dams is critical to assure their safe and efficient operation. Traditional monitoring methods, based on in-situ sensors measurements on the dam, have some limitations in spatial coverage, observation frequency, and cost. This paper describes the potential use of Synthetic Aperture Radar (SAR) scenes from Sentinel-1A for characterizing deformations at the Mosul Dam (MD) in NW Iraq. Seventy-eight Single Look Complex (SLC) scenes in ascending geometry from the Sentinel-1A scenes, acquired from 03 October 2014 to 27 June 2019, and 96 points within the MD structure, were selected to determine the deformation rate using persistent scatterer interferometry (PSI). Maximum deformation velocity was found to be about 7.4 mm·yr−1 at a longitudinal subsidence area extending over a length of 222 m along the dam axis. The mean subsidence velocity in this area is about 6.27 mm·yr−1 and lies in the center of MD. Subsidence rate shows an inverse relationship with the reservoir water level. It also shows a strong correlation with grouting episodes. Variations in the deformation rate within the same year are most probably due to increased hydrostatic stress which was caused by water storage in the dam that resulted in an increase in solubility of gypsum beds, creating voids and localized collapses underneath the dam. PSI information derived from Sentinel-1A proved to be a good tool for monitoring dam deformation with good accuracy, yielding results that can be used in engineering applications and also risk management.


2018 ◽  
Vol 147 ◽  
pp. 05002
Author(s):  
Ricky L. Tawekal ◽  
Faisal D. Purnawarman ◽  
Yati Muliati

In RBUI method, platform with higher risk level will need inspection done more intensively than those with lower risk level. However, the probability of failure (PoF) evaluation in RBUI method is usually carried out in semi quantitative way by comparing failure parameters associated with the same damage mechanism between a group of platforms located in the same area. Therefore, RBUI will not be effective for platforms spread in distant areas where failure parameter associated with the same damage mechanism may not be the same. The existing standard, American Petroleum Institute, Recommended Practice for Structural Integrity Management of Fixed Offshore Structures (API RP-2SIM), is limited on the general instructions in determining the risk value of a platform, yet it does not provide a detail instruction on how determining the Probability of Failure (PoF) of platform. In this paper, the PoF is determined quantitatively by calculating structural reliability index based on structural collapse failure mode, thus the method in determining the inspection schedule is called Risk-Reliability Based Underwater Inspection (RReBUI). Models of 3-legs jacket fixed offshore platform in Java Sea and 4-legs jacket fixed offshore platform in Natuna Sea are used to study the implementation of RReBUI.


2020 ◽  
Vol 12 (19) ◽  
pp. 3145
Author(s):  
Sen Du ◽  
Jordi J. Mallorqui ◽  
Hongdong Fan ◽  
Meinan Zheng

Ground subsidences, either caused by natural phenomena or human activities, can threaten the safety of nearby infrastructures and residents. Among the different causes, mining operations can trigger strong subsidence phenomena with a fast nonlinear temporal behaviour. Therefore, a reliable and precise deformation monitoring is of great significance for safe mining and protection of facilities located above or near the mined-out area. Persistent Scatterer Interferometry (PSI) is a technique that uses stacks Synthetic Aperture Radar (SAR) images to remotely monitor the ground deformation of large areas with a high degree of precision at a reasonable cost. Unfortunately, PSI presents limitations when monitoring large gradient deformations when there is phase ambiguity among adjacent Persistent Scatterer (PS) points. In this paper, an improvement of PSI processing, named as External Model-based Deformation Decomposition PSI (EMDD-PSI), is proposed to address this limitation by taking advantage of an external model. The proposed method first uses interferograms generated from SAR Single Look Complex (SLC) images to optimize the parameter adjustments of the external model. Then, the modelled spatial distribution of subsidence is utilized to reduce the fringes of the interferograms generated from the SAR images and to ease the PSI processing. Finally, the ground deformation is retrieved by jointly adding the external model and PSI results. In this paper, fourteen Radarsat-2 SAR images over Fengfeng mining area (China) are used to demonstrate the capabilities of the proposed method. The results are evaluated by comparing them with leveling data of the area covering the same temporal period. Results have shown that, after the optimization, the model is able to mimic the real deformation and the fringes of the interferograms can be effectively reduced. As a consequence, the large gradient deformation then can be better retrieved with the preservation of the nonlinear subsidence term. The ground truth shows that, comparing with the classical PSI and PSI with unadjusted parameters, the proposed scheme reduces the error by 35.2% and 20.4%, respectively.


Sign in / Sign up

Export Citation Format

Share Document