scholarly journals Development of Risk-Reliability Based Underwater Inspection for Fixed Offshore Platforms in Indonesia

2018 ◽  
Vol 147 ◽  
pp. 05002
Author(s):  
Ricky L. Tawekal ◽  
Faisal D. Purnawarman ◽  
Yati Muliati

In RBUI method, platform with higher risk level will need inspection done more intensively than those with lower risk level. However, the probability of failure (PoF) evaluation in RBUI method is usually carried out in semi quantitative way by comparing failure parameters associated with the same damage mechanism between a group of platforms located in the same area. Therefore, RBUI will not be effective for platforms spread in distant areas where failure parameter associated with the same damage mechanism may not be the same. The existing standard, American Petroleum Institute, Recommended Practice for Structural Integrity Management of Fixed Offshore Structures (API RP-2SIM), is limited on the general instructions in determining the risk value of a platform, yet it does not provide a detail instruction on how determining the Probability of Failure (PoF) of platform. In this paper, the PoF is determined quantitatively by calculating structural reliability index based on structural collapse failure mode, thus the method in determining the inspection schedule is called Risk-Reliability Based Underwater Inspection (RReBUI). Models of 3-legs jacket fixed offshore platform in Java Sea and 4-legs jacket fixed offshore platform in Natuna Sea are used to study the implementation of RReBUI.

Author(s):  
Mehrdad Kimiaei ◽  
Jalal Mirzadeh ◽  
Partha Dev ◽  
Mike Efthymiou ◽  
Riaz Khan

Abstract Fixed offshore platforms subject to wave-in-deck loading have historically encountered challenges in meeting target reliability levels. This has often resulted in costly subsea remediation, impacted platform occupancy levels or premature decommissioning of critical structural assets due to safety concerns. This paper addresses the long-standing industry challenge by presenting a novel structural reliability approach that involves converging the analytical behavior of a structure to its measured dynamic response for assessment. In this approach, called the Structural Integrity Management (SIM) TRIAD method, the platform model is calibrated based on the measured in-field platform natural frequencies using a structural health monitoring (SHM) system, so that the reliability assessment can be performed on a structural model whose stiffness is simulated as close to reality as possible. The methodology demonstrates the potential of unlocking structural capacity of offshore structures by removing conservatism normally associated with traditional reliability assessment methods, thus significantly improving the ability to achieve target structural reliability levels in a cost effective manner. The SIM TRIAD method has been implemented while assessing an existing fixed offshore platform subject to wave-in-deck loads, which is located in East Malaysian waters. It has enabled the facility operator to achieve acceptable target structural reliability and has assisted in developing an optimized risk-based inspection (RBI) plan for ensuring safe operations to end of asset field life. The methodology and findings of the assessment are presented in this paper to illustrate the benefits of the SIM TRIAD method.


Author(s):  
Dong Cheol Seo ◽  
Tanvir Sayeed ◽  
M. Hasanat Zaman ◽  
Ayhan Akinturk

Offshore oil and gas operations conducted in harsh environments such offshore Newfoundland may pose additional risks due to collision of smaller ice pieces and bergy bits with the offshore structures, including their topsides in the case of gravity based structures particularly in extreme waves. In this paper, CFD (Computational Fluid Dynamics) prediction for wave loads acting on a bergy bit around a fixed offshore platform is presented. Often the vertical column of a gravity based structure is designed against ice collisions, if operating in such an environment. In practices, topsides are usually protected by being placed sufficiently high from the still water level, away from the reach of the bergy bits. This vertical clearance between the still water level and the topside deck is known an air gap. Hence, the amount of the air gap planned for such an offshore structure is an important factor for the safety of the topsides at a given location. In this study a CFD method is applied to estimate the dynamic response of the bergy bit and provide a reliable air gap to reduce the potential risk of the bergy bit collision. In advance of more complex collision simulations using a free-floating ice for the airgap design, CFD analysis of wave load prediction on a stationary bergy bit is carried out and reported in this paper. In the experiments and CFD simulations, the location of the bergy bit is changed to quantify the change of wave load due to the hydrodynamic interaction between the bergy bit and the platform. Finally, the results of the CFD simulations are compared with the relevant experiment results to confirm the simulation performance prior to the free floating bergy bit simulations.


Author(s):  
S. M. S. M. K. Samarakoon ◽  
R. M. Chandima Ratnayake ◽  
S. A. S. C. Siriwardane

Structural integrity control (SIC) is an increasingly important element of offshore structures. Not only is it used in newly built and existing offshore structures (e.g. oil and gas (O&G) production & process facilities (P&PFs), wind turbine installations, etc.), but SIC is also essential for ageing offshore platforms which are subjected to an extension of their design service life. In these cases, SIC programs must be performed to assess the platforms. If any significant changes in structural integrity (SI) are discovered, then it is essential to implement an appropriate strengthening, modification and/or repair (SMR) plan. Currently, welded and grouted repairs are mostly used for SMR. Although a welded repair may typically restore a structure to its initial condition, if the damage is due to fatigue loading and welded repairs have been carried out, then historical evidence reveals that there is a high potential for the damage to reappear over time. On the other hand, mechanical connections are significantly heavier than grouted connections. Consequently, grouted repairs are widely used to provide additional strength, for instance, to handle situations such as preventing propagation of a dent or buckle, sleeved repairs, leg strengthening, clamped repair for load transfer, leak sealing and plugging, etc. This manuscript examines current developments in grouted connections and their comparative pros and cons in relation to welded or mechanical connections. It also provides recommendations for future research requirements to further develop SMR with grouted connections.


Author(s):  
Torfinn Hørte ◽  
Lorents Reinås ◽  
Jan Mathisen

Structural Reliability Analysis (SRA) methods have been applied to marine and offshore structures for decades. SRA has proven useful in life extension exercises and inspection planning of existing offshore structures. It is also a useful tool in code development, where the reliability level provided by the code is calibrated to a target failure probability obtained by SRA. This applies both to extreme load situations and also to a structural system under the influence of a time dependent degradation process such as fatigue. The current analysis methods suggested for service life estimation of subsea wells are deterministic, and these analyses are associated with high sensitivity to variations in input parameters. Thus sensitivity screening is often recommended for certain input parameters, and the worst case is then typically used as a basis for the analysis. The associated level of conservatism embedded in results from a deterministic analysis is not quantified, and it is therefore difficult to know and to justify if unnecessary conservatism can be removed from the calculations. By applying SRA to a wellhead fatigue analysis, the input parameters are accounted for with their associated uncertainty given by probability distributions. Analysis results can be generated by use of Monte-Carlo simulations or FORM/SORM (first/second order reliability methods), accounting for the full scatter of system relations and input variations. The level of conservatism can then be quantified and evaluated versus an acceptable probability of failure. This article presents results from a SRA of a fictitious but still realistic well model, including the main assumptions that were made, and discusses how SRA can be applied to a wellhead fatigue analysis. Global load analyses and local stress calculations were carried out prior to the SRA, and a response surface technique was used to interpolate on these results. This analysis has been limited to two hotspots located in each of the two main load bearing members of the wellhead system. The SRA provides a probability of failure estimate that may be used to give better decision support in the event of life extension of existing subsea wells. In addition, a relative uncertainty ranking of input variables provides insight into the problem and knowledge about where risk reducing efforts should be made to reduce the uncertainty. It should be noted that most attention has been given to the method development, and that more comprehensive analysis work and assessment of specific input is needed in a real case.


2017 ◽  
Vol 862 ◽  
pp. 265-270
Author(s):  
Raditya Danu Riyanto ◽  
Murdjito

Offshore structure, particularly fixed offshore structures, should be kept in the performance for the fit-for-purpose condition during their operating lifetime. For fixed offshore structures that exceed their designated life years, the proper Structural Integrity Management System (SIMS) should be developed and applied. Despite the fixed offshore platforms have their service life, there are still platforms that continue to operate exceeding their service lifetime. These ageing platforms should be taken care thoroughly to avoid the consequences that could take casualties. This paper will propose the proper initiation of SIMS development for ageing fixed offshore platforms in Indonesia, by taking an example at Bekapai Field Platforms in East Kalimantan. Using HAZID technique and several ranking criteria, the platforms are assessed and ranked. Platforms that categorized in critical condition are grouped based on similarities in geometry and function. The highest rank is analyzed in computer Finite Element Analysis (FEA) Software with modification based on latest inspection result. This method is proven to be a proper method to be used as a maintenance program for ageing fixed offshore platforms in Indonesia.


Author(s):  
E. Mat Soom ◽  
M.K. Abu Husain ◽  
N.I. Mohd Zaki ◽  
N.A. Mukhlas ◽  
S.Z.A. Syed Ahmad ◽  
...  

The oil and gas sector has recognised structural integrity assessment of ageing platform for prospective life extension as a rising concern, particularly in encountering the randomness of the harsh ocean environments. This condition leads to uncertainty in wave-in-deck load estimates and a high load level being imposed on offshore structures. This emphasises the necessity of enhanced reliability, as failure might result in inaccessibility because of the uncertainties related to long-distance services, such as accuracy of predictions of loads and responses. Even though the established guidelines present a fundamental assessment, additionally, comprehensive rules are required. This paper performed a reliability analysis incorporating practical approaches that can more accurately represent time-dependent structural deterioration. The following two procedures have been adopted by a majority of significant oil and gas operators to monitor the safety and integrity of these structures: a) Ultimate Strength Assessment (USA) method and b) Reliability Design Assessment (ReDA) method. A comparison of these two reliability approaches was performed on selected ageing jacket structures in the region of the Malaysian sea. The comparative findings, namely, reserve strength ratio (RSR) at various years of the return period (RP) and ratio value for risk of failure regarding the probability of failure (POF), provided a check and balance in strengthening confidence in the results. The findings showed that the structural components might safely survive either using the USA and ReDA method in such conditions, as the reliability indexes were determined to be satisfactory compared to allowable values from ISO 19902 design specifications. Therefore, these evaluations were determined to control the risk level of the structure during the remaining of its lifetime and undertake cost-effective inspections or mitigation strategies when necessary.


Author(s):  
Mike Efthymiou ◽  
Jan Willem van de Graaf

This paper reviews the structural integrity and reliability of fixed steel offshore structures with a focus on improved models and incorporation of these models in design standards. Technical achievements in four key areas are reviewed which, when combined, resulted in a step improvement in the calculation of structural reliability. The first area is the extreme environmental loading on an offshore platform; the second area is the joint occurrence of waves, winds and currents, i.e. accounting for the fact that these do not, in general, peak at the same time and do not act in the same direction. The third area is the estimation of the ultimate strength of a fixed steel platform, accounting for component strength, including the buckling and post-buckling behaviour and the uncertainty in system strength. The fourth and final area is the integration of the above models to estimate the probability of failure. The historical performance of platforms and the improvements in successive editions of API RP 2A are reviewed; reliability targets appropriate for different exposure levels and corresponding performance standards are developed, aimed at harmonizing design practices worldwide. A differentiation is recommended between permanently manned L-1 installations and manned-evacuated L-1 installations in the Gulf of Mexico; this is because the consequences of failure are considerably different.


Author(s):  
O̸istein Hagen ◽  
Gunnar Solland ◽  
Jan Mathisen

Offshore platform resistance to cyclic storm actions is addressed. In order to achieve the best economy of the structure especially when assessing existing structures, the ultimate capacity of the structure is utilized. This means that parts of the structure may be loaded into the non-linear range and consequently the load-carrying resistance of the structure against future load cycles may be reduced. In such cases it is required to carry out a check of the cyclic capacity of the structure. Such checks are required in the ISO 19902 code for Fixed Steel Offshore Structures. The paper presents a proposal for how a load history for cyclic checks can be established. The method is in line with what is included in the NORSOK N-006 standard on “Assessment of structural integrity for existing load-bearing structures”. The load-history for the waves in the design storm may be expressed as ratio of the dimensioning wave. The ratio will be different for check of failure modes where the entire storm will be relevant such as crack growth, compared to failure modes like buckling where only the remaining waves after the dimensioning wave need to be accounted for. Using simple order statistics and simulation, the statistics for the ith (Hi), i = 1, 2, 3, 4 etc. highest wave in the storm is studied in some detail, assuming that the maximum wave (H1) is equal to an extreme wave obtained by a code requirement. Environmental contours for the pair (H1,H2) are established by Inverse FORM for design conditions. Further, the long term statistics for load effects that are expressed as a function of H1, .., H4, i.e. L = f(H1, .., H4), are determined. The R-year value LR for the load effect L is determined by structural reliability techniques, and the most probable combination (design point) (H1*, .., H4*) for L = LR is determined. The design point values Hi*, as well as the design point value for the significant wave height, are determined for different load effects, and their characteristics for different types of load effects are discussed. The paper gives advice also on how to establish the magnitude for the remaining waves in the storm.


Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

Offshore platforms are subjected to wind, waves and tidal flows. Tidal flow will generate a steady current, which induces a lift force and a drag force on the platform legs. In addition, water particle velocities induced by waves give rise to an oscillatory flow. As a result, the structure will experience a lift, drag and inertia force when subjected to wave-induced flow patterns. On top of that, a turbulent Von Karman vortex street can appear in the wake of the platform legs for certain combinations of dimensions and flow velocities. Vortex shedding can lead to vortex induced vibrations, which may jeopardize the integrity of the entire offshore platform. Environmental loads can cause significant deformations of offshore structures, which can in turn influence the fluid flow. Multiphysics modelling is required to capture the mechanisms governing fluid-structure interaction. In this paper, a Coupled Eulerian Lagrangian (CEL) approach is pursued to simulate offshore platform movements in strong tidal flows. In a CEL analysis, the fluid flow is modelled in an Eulerian framework: the water is described by an equation of state, and can flow freely through a fixed mesh. The offshore platform is modelled as a compliant structure in a traditional Lagrangian formulation, where the nodes move with the underlying material. Interaction between the fluid domain and the offshore structure is enforced using general contact conditions. The strongly coupled problem is then tackled with an explicit solver. Here, the CEL approach is demonstrated to simulate the movement of an offshore jack-up barge. The response of the vessel is calculated for different flow conditions. The multiphysics model allows evaluating the added value of structural redundancy, e.g. in the number of platform legs required for a safe design. In addition, it provides a valuable tool to predict the tidal windows allowed for given operational conditions.


Sign in / Sign up

Export Citation Format

Share Document