Inscribing in to an Control Attempt against Jammer Attack Using FB Decoding Mechanism

2014 ◽  
Vol 573 ◽  
pp. 412-417
Author(s):  
G. Sona ◽  
P. Annapandi ◽  
Boopathy Yamni

Previously Spread Spectrum (SS) communication involve by setting up preconfigured keys among the communicating nodes that are constrained to possess synchronous behaviour. This extends to several issues creating circular dependency problem, offering less energy efficiency and thereby leading to insecure short-lived communication. In this paper, an opponent resilient secret sharing concept is introduced without any establishment of pre-shared keys by FB (Forward Backward) decoding. It illustrates using time reversed message extraction and key scheduling at receiver side that enables secured transmission over wireless communication even when the receiver node remains inactive and attaining jammer not to obtain the original data sent by the sender node. Spreading the data involves use of DSSS as it would be more compatible in adjusting to multiple bandwidths. Main goal is to transmit the message in such a way that the time required to deliver the secret must be less than the time for the opponent to find key during transmission. Further, it come up with minimal storage overhead, cost effective and sustains long-lived secured communication among the interacting nodes. Evaluation of various parameters is performed using NS-2 toolkit to prove that this newer approach is better than earlier work.

2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 219
Author(s):  
Dhananjay Thiruvady ◽  
Kerri Morgan ◽  
Susan Bedingfield ◽  
Asef Nazari

The increasing demand for work-ready students has heightened the need for universities to provide work integrated learning programs to enhance and reinforce students’ learning experiences. Students benefit most when placements meet their academic requirements and graduate aspirations. Businesses and community partners are more engaged when they are allocated students that meet their industry requirements. In this paper, both an integer programming model and an ant colony optimisation heuristic are proposed, with the aim of automating the allocation of students to industry placements. The emphasis is on maximising student engagement and industry partner satisfaction. As part of the objectives, these methods incorporate diversity in industry sectors for students undertaking multiple placements, gender equity across placement providers, and the provision for partners to rank student selections. The experimental analysis is in two parts: (a) we investigate how the integer programming model performs against manual allocations and (b) the scalability of the IP model is examined. The results show that the IP model easily outperforms the previous manual allocations. Additionally, an artificial dataset is generated which has similar properties to the original data but also includes greater numbers of students and placements to test the scalability of the algorithms. The results show that integer programming is the best option for problem instances consisting of less than 3000 students. When the problem becomes larger, significantly increasing the time required for an IP solution, ant colony optimisation provides a useful alternative as it is always able to find good feasible solutions within short time-frames.


2020 ◽  
Vol 14 (3) ◽  
pp. 327-354
Author(s):  
Mohammad Omidalizarandi ◽  
Ralf Herrmann ◽  
Boris Kargoll ◽  
Steffen Marx ◽  
Jens-André Paffenholz ◽  
...  

AbstractToday, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively.


2014 ◽  
Vol 41 (6) ◽  
pp. 499 ◽  
Author(s):  
David J. Will ◽  
Karl J. Campbell ◽  
Nick D. Holmes

Context Worldwide, invasive vertebrate eradication campaigns are increasing in scale and complexity, requiring improved decision making tools to achieve and validate success. For managers of these campaigns, gaining access to timely summaries of field data can increase cost-efficiency and the likelihood of success, particularly for successive control-event style eradications. Conventional data collection techniques can be time intensive and burdensome to process. Recent advances in digital tools can reduce the time required to collect and process field information. Through timely analysis, efficiently collected data can inform decision making for managers both tactically, such as where to prioritise search effort, and strategically, such as when to transition from the eradication phase to confirmation monitoring. Aims We highlighted the advantages of using digital data collection tools, particularly the potential for reduced project costs through a decrease in effort and the ability to increase eradication efficiency by enabling explicit data-informed decision making. Methods We designed and utilised digital data collection tools, relational databases and a suite of analyses during two different eradication campaigns to inform management decisions: a feral cat eradication utilising trapping, and a rodent eradication using bait stations. Key results By using digital data collection during a 2-year long cat eradication, we experienced an 89% reduction in data collection effort and an estimated USD42 845 reduction in total costs compared with conventional paper methods. During a 2-month rodent bait station eradication, we experienced an 84% reduction in data collection effort and an estimated USD4525 increase in total costs. Conclusions Despite high initial capital costs, digital data collection systems provide increasing economics as the duration and scale of the campaign increases. Initial investments can be recouped by reusing equipment and software on subsequent projects, making digital data collection more cost-effective for programs contemplating multiple eradications. Implications With proper pre-planning, digital data collection systems can be integrated with quantitative models that generate timely forecasts of the effort required to remove all target animals and estimate the probability that eradication has been achieved to a desired level of confidence, thus improving decision making power and further reducing total project costs.


Author(s):  
Bryan W. Schlake ◽  
Brian S. Daniel ◽  
Ron Voorheis

In pursuit of improved safety, Norfolk Southern Corp. (NS) has partnered with Amberg Technologies to explore the potential benefits of a laser-based measurement system for measuring over dimensional freight rail shipments. Shipments that do not fall within a standard geometric envelope, denoted as Plate B in the Association of American Railroads (AAR) Open Top Loading Rules [1], are considered to be over dimensional, or High-Wide Loads (HWLs). Extending beyond the limits of the Plate B diagram, these loads are not permitted in unrestricted interchange service. Instead, they must be measured both at points of origin and at interchange points. For US Class I Railroads, the de facto method for measuring HWLs requires mechanical personnel to either climb on the equipment or use a ladder and physically measure the overall height and width of the load. Using a tape measure, plumb line, and 6-foot level, car inspectors, or carmen, must often make multiple measurements to determine the height or width of a critical point on the load. The summation of these measurements can be subject to mathematical human error. In addition to the inherent limitations with regards to accuracy and efficiency, this method of measurement presents considerable safety challenges. The objective of the project was to develop a portable, cost-effective and accurate measurement system to improve the day-to-day operational process of measuring HWLs and reduce human exposure to railyard hazards. Norfolk Southern worked closely with Amberg Technologies to provide a clear overview of the current measuring methods, requirements, challenges and risks associated with HWLs. Amberg then developed a prototype system (with patent pending) and successful tests have been completed at both a point of origin for NS shipments and at a location where HWLs are received at interchange. The measuring system consists of a tripod mounted laser, a specially designed track reference target (TRT) and software designed specifically for HWL measurements. The system allows car inspectors to take measurements from a safe, strategic location away from the car. As a result, this system eliminates the need to climb on the equipment or a ladder and greatly reduces the amount of time spent on and around live tracks. In addition, initial tests indicate that this technology reduces the labor time required to measure HWLs by as much as one half while improving measurement accuracy. These tests have demonstrated that a laser-based system has the potential to greatly improve the safety, efficiency and accuracy associated with measuring HWLs.


2021 ◽  
Author(s):  
Benjamin Butler ◽  
Justin Roberts ◽  
Matthew Kelsey ◽  
Steffen Van Der Veen

Abstract Multilateral wells have been proven over decades and have developed into a reliable and cost effective approach to mature field rejuvenation and extended commercial viability. This paper will discuss case studies demonstrating a number of techniques used to create infill multilateral wells in existing fields with a high level of reliability and repeatability. Techniques reviewed will cover cutting and pulling production casing to drill and case a new mainbore versus sidetracking and adding laterals to an existing mainbore. Discussion will also cover completion designs that tie new laterals into existing production casing providing significantly greater reservoir contact. Temporary isolation of high water-cut laterals brought into production later in the well's life through bespoke completion designs will also be discussed. Case studies will include discussion of workover operations, isolation methods, and lateral creation systems. Where available, resulting field performance improvements will also be discussed. In Norway, slot recoveries are commonly performed by cutting and pulling the 10-3/4" casing, redrilling a new mainbore, and running new casing. This enables junction placement closer to unswept zones and easier lateral drilling to targets. It does have drawbacks, however, related to the additional time required to pull the subsea xmas tree and challenges associated with pulling casing. In 2019, Norway successfully completed a 10-3/4" retrofit installation, whereas a sidetrack was made from the 10-3/4" and an 8-5/8" expandable liner was run down into the reservoir pay zone where two new laterals were created. The 8-5/8" liner saved time otherwise spent having to drill the section down to the payzone from the laterals. These wells have a TAML Level 5 isolated junction, Autonomous Inflow Control Devices (AICDs) in each lateral, and an intelligent completion interface across the junction, enabling active flow management and monitoring of both branches. In Asia, infill laterals were added to existing wellbores by sidetracking 9-5/8" casing and tying production back to the original mainbore. These dual laterals were completed with intelligent completions to enable lateral flow management and monitoring of both laterals. In Australia, dual laterals were created in a similar fashion; laterals are added to existing wells; however, a novel approach was used to manage water from existing lower mainbore laterals whereby they are shut in at completion and opened later when the new lateral is watered out. The older lateral now produces at lower water cut given the time allowed for water coning in the lateral to relax. Using this practice, production is alternated back and forth between the two laterals. In the Middle East, an older well has been converted from TAML Level 4 to Level 5 in order to prevent detected gas migrating into the mainbore at the junction. This conversion of a cemented junction well has enabled production to resume on this well. The well was converted to incorporate an intelligent completion to enable flow control of each lateral. This paper intends to provide insights into the various mature field re-entry methods for multilateral well construction, and a review of the current technology capabilities and well designs through the review of multiple case histories.


2015 ◽  
Vol 734 ◽  
pp. 31-39
Author(s):  
Wen Yang Cai ◽  
Gao Yong Luo

The increasing demand for high precision indoor positioning in many public services has urged research to implement cost-effective systems for a rising number of applications. However, current systems with either short-range positioning technology based on wireless local area networks (WLAN) and ZigBee achieving meter-level accuracy, or ultra-wide band (UWB) and 60 GHz communication technology achieving high precision but with high cost required, could not meet the need of indoor wireless positioning. This paper presents a new method of high precision indoor positioning by autocorrelation phase measurement of spread spectrum signal utilizing carrier frequency lower than 1 GHz, thereby decreasing power emission and hardware cost. The phase measurement is more sensitive to the distance of microwave transmission than timing, thus achieving higher positioning accuracy. Simulation results demonstrate that the proposed positioning method can achieve high precision of less than 1 centimeter decreasing when various noise and interference added.


2005 ◽  
Vol 35 (11) ◽  
pp. 2671-2678 ◽  
Author(s):  
N Stenvall ◽  
T Haapala ◽  
S Aarlahti ◽  
P Pulkkinen

Root cuttings from five clones of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) obtained from 2-year-old stock plants were grown in a peat–sand mixture (soil) at four soil temperatures (18, 22, 26, and 30 °C). Half of the cuttings were grown in light and the rest in darkness. The root cuttings that were grown at the highest soil temperature sprouted and rooted significantly better than the cuttings grown at the lower temperatures. Light did not affect the sprouting of root cuttings but did have a negative effect on their rooting. Moreover, the clones varied significantly in sprouting and rooting percentages, as well as in the time required for sprouting. In general, higher soil temperatures hastened sprouting of the cuttings. Sprouting was also faster in the light than in the dark treatment. Differences in soil temperature, light conditions, or clone had no significant effect on rooting time.


2021 ◽  
Vol 37 (2) ◽  
pp. 68-75
Author(s):  
Drew David Reinbold-Wasson ◽  
Michael Hay Reiskind

ABSTRACT An essential component of vector-borne disease monitoring programs is mosquito surveillance. Surveillance efforts employ various collection traps depending on mosquito species and targeted life-history stage, i.e., eggs, larvae, host-seeking, resting, or gravid adults. Surveillance activities often use commercial traps, sometimes modified to accept specific mosquito species attractants. The advent of widely available and affordable 3D printing technology allows the construction of novel trap designs and components. The study goal was to develop and assess a cost-effective, multipurpose, 6-volt mosquito trap integrating features of both host-seeking and gravid mosquito traps to collect undamaged live specimens: a multifunctional mosquito trap (MMT). We tested the MMT in comparison to commercial traps, targeting gravid Aedes albopictus, host-seeking Ae. albopictus, and total number of host-seeking mosquitos regardless of species. Field evaluations found the MMT performed as well as or better than comparable commercial traps. This project demonstrates an easy to construct, inexpensive, and versatile mosquito trap, potentially useful for surveying multiple mosquito species and other hematophagous insects by varying attractants into the MMT.


COVID ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 717-727
Author(s):  
Parastoo Kheiroddin ◽  
Magdalena Gründl ◽  
Michael Althammer ◽  
Patricia Schöberl ◽  
Linda Plail ◽  
...  

(1) Background: With vaccination and new variants of SARS-CoV-2 on the horizon, efficient testing in schools may enable prevention of mass infection outbreaks, keeping schools safe places and buying time until decisions on feasibility and the necessity of vaccination in children and youth are made. We established, in the course of the WICOVIR (Where Is the COrona VIRus) study, that gargle-based pool-PCR testing offers a feasible, efficient, and safe testing system for schools in Germany when applied by central university laboratories. (2) Objectives: We evaluated whether this approach can be implemented in different rural and urban settings. (3) Methods: We assessed the arrangements required for successful implementation of the WICOVIR approach in a variety of settings in terms of transport logistics, data transfer and pre-existing laboratory set-up, as well as the time required to establish the set-up. (4) Results: We found that once regulatory issues have been overcome, all challenges pertaining to logistics, data transfer, and laboratory testing on different platforms can be solved within one month. Pooling and depooling of samples down to the individual test result were achievable within one working day in all settings. Local involvement of the community and decentralized set-ups were keys for success. (5) Conclusion: The WICOVIR gargle-based pool-PCR system is so robust and simple that it can be implemented within one month in all settings now or in future pandemics.


Sign in / Sign up

Export Citation Format

Share Document