Simulation Analysis of Firing Dynamics on a New Heavy Machine Gun

2014 ◽  
Vol 574 ◽  
pp. 32-35 ◽  
Author(s):  
Zhi Teng Fan ◽  
Rui Lin Wang ◽  
Tao Li

In order to study the automation dynamics of a certain type of Heavy Machine Gun, a virtual prototype model is established based on analysing the structural characteristics and movement principle. The dynamics model is created by ADAMS, including determining the boundary conditions of shooter and soil. The movement characteristic of bolt in rounds of continuous firing is analysed. Choosing the velocity of bolt as checkout targets, analysing the simulation result and test data comparatively, the feasibility of model is confirmation. So the foundation of further movement analysing, parameter matching and structural optimization about the rifle is laid.

2014 ◽  
Vol 543-547 ◽  
pp. 1305-1308
Author(s):  
Xiao Feng Liu ◽  
Jing Wei Yu ◽  
Hai Tao Wang ◽  
Zhao Wen Fang

For helicopter structural characteristics, this article focuses on the helicopter to take off, hover and other state aerodynamic analysis, the establishment of the fuselage-landing gear dynamics model; while the helicopter simulator simulation system are described, and the kinetic model was built simulation analysis, simulation results and the actual flight conditions consistent, indicating that the model is correct, there is a certain reference value.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Weikang Kong ◽  
Jixin Wang ◽  
Dewen Kong ◽  
Yuanying Cong ◽  
Shuangshi Feng

With the rapid development of the world economic construction and the shortage of energy, it has become a hot research issue to realize the electrification of the vehicle driving system and improve energy efficiency. Most of the electric construction machinery power systems are characterized by low speed and high load. The coordinated driving of multiple motors can increase the output torque and improve the transmission efficiency of the machine on the basis of a compact layout. A novel configuration of electric construction vehicles based on multi-motor and single-speed and its driving torque distribution control method is presented in this paper. The detailed mathematical model is established and the simulation analysis is carried out based on it. The results show that the proposed multi-motor driving system with the control strategy can improve the overall efficiency in the condition of ensuring the driving force when the parameter matching and motors choosing reasonably.


2021 ◽  
Author(s):  
Mario Guisasola

<p>The Von Mises, Monocontentio and Bicontentio footbridges are three parameterized metal bridge whose main structural characteristics are their variable depth depending on the applied stress and the embedding of abutments. Its use is considered suitable for symmetrical or asymmetrical topographies with slopes or vertical walls on one or both edges. The footbridges include spans spaced apart by 20 to 66 meters, and are between 2 to 4.5 meters wide.</p><p>Its design is based on five basic concepts: integration in the geometry of the environment; continuous search for simplicity; design based on a geometry that emanates from structural behavior; unitary and round forms; and long- lasting details.</p><p>The structural behavior of these prototypes has been compared with three types of constant-depth metal beams: the bridge simply supported, and the bridge embedded on one or both sides.</p><p>The embedding of abutments, and the adoption of a variation of depth adapted to the bending moments diagrams, allow for more efficient and elegant forms which are well-adapted to the boundary conditions.</p>


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2064
Author(s):  
Sadaf Khan ◽  
Oluwafemi Samson Balogun ◽  
Muhammad Hussain Tahir ◽  
Waleed Almutiry ◽  
Amani Abdullah Alahmadi

In this article, we use Lehmann alternative-II to extend the odd generalized exponential family. The uniqueness of this family lies in the fact that this transformation has resulted in a multitude of inverted distribution families with important applications in actuarial field. We can characterize the density of the new family as a linear combination of generalised exponential distributions, which is useful for studying some of the family’s properties. Among the structural characteristics of this family that are being identified are explicit expressions for numerous types of moments, the quantile function, stress-strength reliability, generating function, Rényi entropy, stochastic ordering, and order statistics. The maximum likelihood methodology is often used to compute the new family’s parameters. To confirm that our results are converging with reduced mean square error and biases, we perform a simulation analysis of one of the special model, namely OGE2-Fréchet. Furthermore, its application using two actuarial data sets is achieved, favoring its superiority over other competitive models, especially in risk theory.


Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.


2014 ◽  
Vol 900 ◽  
pp. 386-389
Author(s):  
Zhi Chao Cai ◽  
Li Xia Yang ◽  
Hao Chuan Deng ◽  
Xiao Wei ◽  
Hong Cheng Yin

To simulate Electromagnetic wave propagation in anisotropic media, absorbing boundary conditions are needed to truncate the computation domains. Based on the finite difference time domain method in anisotropic medium, the implementation of the modified nearly perfectly matched layer absorbing boundary conditions for truncating anisotropic medium is presented. By using the partial derivatives of space variables stretched-scheme in the coordinate system, the programming complexity is reduced greatly. According to one dimensional numerical simulation analysis, the modified nearly perfectly matched layer absorbing boundary condition is validated.


2013 ◽  
Vol 441 ◽  
pp. 439-442
Author(s):  
Rui Ying Shao ◽  
Hong Jun Wang ◽  
Juan Song ◽  
Hai Yan Wang

Based on the theory research and virtual prototype technology, the dynamics characteristics of drum washing machine vibration isolation system is studied and analyzed. According to the Lagrange method, the dynamics equations and motion differential equations of drum washing machine vibration isolation system is established. Through the establishment of rigid parameterized virtual prototype model of the vibration system, dynamics simulation analysis is accomplished based on ADAMS, the kinematics characteristics and mechanical characteristics are obtained.


2014 ◽  
Vol 644-650 ◽  
pp. 199-202
Author(s):  
Pei Qin Wang ◽  
Zeng Shun Xu ◽  
Zuo Feng Sun ◽  
Hui Yuan Jiang

Based on theoretical calculation, virtual prototype technology and the method of finite element analysis, the fully mechanized hydraulic support is designed and simulated. Firstly, the four-link mechanism of hydraulic support mechanical model and mathematical model are established, the demission is confirmed by design calculation of structure. Secondly, through the establishment of rigid parameterized virtual prototype model of the system, dynamics simulation analysis and research is finished based on ADAMS on the mechanical properties. Finally, based on FEA, the modal calculation of key components is completed by using ANSYS.


2014 ◽  
Vol 945-949 ◽  
pp. 121-126 ◽  
Author(s):  
Feng Wei Xue ◽  
Ji Ping Zhou

The conveying manipulator is an indispensable transmission system of JM31-160 automatic stamping production line, and structural characteristics of the manipulator directly affect the productivity of auto stamping production line. Using virtual prototyping technology, basing on the Multi-body dynamics theory, explored the technical line of dynamic design theory to apply on the transmission system. Reaching a conclusion the function of optimized structure is improved, and manufacturing cost brings down.


Sign in / Sign up

Export Citation Format

Share Document