Recycled Aggregate Concrete Mixture Proportion Method Based on Pulp Content

2014 ◽  
Vol 584-586 ◽  
pp. 1425-1431
Author(s):  
Qing Han ◽  
Zong Ming Jia ◽  
Dong Ye Sun

Putting forward a new recycled aggregate concrete mixture proportion method based on the pulp content by researching the effect of pulp content on recycled coarse aggregate physical properties .Research on the cube compressive strength and splitting tensile strength of recycled aggregate concrete by the proposed method and results showed that:The proposed method can reduce the dosage of cement and sand, and increase the recycled aggregate concrete compressive strength and splitting tensile strength ;Establishing the relationship formula between splitting tensile strength and compressive strength of recycled aggregate concrete upon a large number of experimental data.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Syed Ishtiaq Ahmad ◽  
Md. Shafiqur Rahman

Most of the steel mills in Bangladesh use induction furnace which produces large quantities of slags that have very little use except land filling. Therefore, feasibility of using this slag is examined in concrete with recycled aggregate, which is another waste product that is generated due to removal of old structures. Concrete with three target strengths, 17.23, 20.68, and 24.13 MPa, was prepared using recycled concrete acquired from a recently demolished building in Dhaka, Bangladesh. Recycled coarse aggregate was replaced with induction furnace slag by 0%, 25%, 50%, 75%, and 100% for each target strength. Samples prepared from these concretes were tested for workability, compressive strength, splitting tensile strength, modulus of elasticity, and durability properties e.g., porosity, absorption, and rapid chloride penetration. Review of test results suggests that workability of concrete was not adversely affected by incorporation of induction furnace slag. For up to 50% of induction furnace slag replacement, both compressive strength and splitting tensile strength increased in recycled aggregate concrete. Further, for all ratios of induction furnace slag replacement, modulus of elasticity increased compared to 100% recycled aggregate concrete. Porosity and absorption also decreased in concrete where up to 50% of recycled aggregate was replaced by induction furnace slag. Considering these, it is concluded that 50% of recycled aggregate can be replaced by induction furnace slag that will result in superior mechanical and durability properties in recycled aggregate concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Khaleel H. Younis ◽  
Shelan M. Mustafa

The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) to improve the performance of recycled aggregate concrete (RAC) containing recycled aggregate (RA) derived from processing construction and demolition waste of concrete buildings. The examined properties include compressive strength, splitting tensile strength, and water absorption. The study also includes examining the microstructure of RA and RAC with and without nanoparticles of SiO2. In total, nine mixes were investigated. Two mixes with RA contents of 50% and 100% were investigated and for each RA content; three mixes were prepared with three different nanoparticles dosages 0.4%, 0.8%, and 1.2% (by mass of cement). A control mix with natural aggregate (NA) was also prepared for comparison reasons. The results show that nanoparticles of silica can improve the compressive strength, tensile strength, reduce the water absorption, and modify the microstructure of RAC.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 280 ◽  
Author(s):  
João Pacheco ◽  
Jorge de Brito ◽  
Carlos Chastre ◽  
Luís Evangelista

This paper investigates the effect of recycled coarse aggregate incorporation on the relationship between 150 mm cubic and Փ 150 mm cylindrical compressive strength (the reference strength of standards) by comparing data from recycled and natural aggregate concrete compositions in which both cubes and cylinders were tested. A conversion factor from cubic to cylindrical strength is proposed in two versions: A deterministic and a probabilistic one. Such factor has not been studied before and researchers have been converting cubic data as if natural aggregate concrete were tested. The probabilistic factor is intended for reliability analyses on the structural behaviour of recycled aggregate concrete using data from laboratory cube tests. It was found that the incorporation of recycled coarse aggregates sourced from concrete waste significantly decreases the expected value of the factor but the factor’s scatter is relatively unaffected.


Recycled aggregates (RCA) are the aggregates which are made up of crushed, inorganic particles that are obtained from the construction demolition debris. Now a day’s protection of environment is the ultimate challenge to the society. So the usage of RCA’s is the best alternative for the aggregates which are obtained naturally in the construction activity. The scope of using these recycled concrete aggregates is increasing day by day. It reduces the cost effectively as we are using waste concrete as recycled aggregates. The main focus of this paper is to use find the strength qualities of recycled aggregates so as to use it as an alternative for the natural aggregates in high strength concrete for various construction activities. Comparison of workability, compressive strength, tensile strength, elastic modulus and flexural strength of recycled aggregate concrete is made with natural aggregate concrete. Here M25 grade concrete is taken and the natural aggregates were replaced with recycled aggregates in various percentages of 0%, 25%, 50%, 75% and 100%. The mix design for these replacement ratios are done by using code of IS 10262-2009. In order to determine the properties which were mentioned above a total of 60 cubes, 10 beams and 40 cylinders were casted. The compressive strength and tensile strength of RCA concrete have been determined for 7 days and 28 days where as the modulus of elasticity and the flexural strength of RCA concrete are determined after curing for the period of 28 days. The tests done on RCA concrete are compared with concrete which is obtained by natural aggregates As per IS codification the parameters which were determined are reducing moderately as the amount of aggregates which are recycled is being raised


2021 ◽  
Vol 60 (1) ◽  
pp. 578-590
Author(s):  
Zhong Xu ◽  
Zhenpu Huang ◽  
Changjiang Liu ◽  
Xiaowei Deng ◽  
David Hui ◽  
...  

Abstract Geopolymer cementitious materials and recycled aggregate are typical representatives of material innovation research in the engineering field. In this study, we experimentally investigated a method to improve the performance of geopolymer-recycled aggregate concrete (GRAC). The recycled concrete aggregates and steel fiber (SF), fly ash (FA), metakaolin (MK), and sodium silicate solution were used as the main raw materials to prepare fiber-reinforced geopolymer-recycled aggregate concrete (FRGRAC). First, the orthogonal test was carried out to study the GRAC, and the optimal mix proportion was found. Second, building on the optimal mix proportion, the effects of the SF content on the slump, 7 and 28 days compressive strength, tensile strength, and flexural strength of FRGRAC were further studied. Finally, the microscopic mechanism of FRGRAC was studied by scanning electron microscopy (SEM). The study results indicate that the slump continues to decrease as the fiber content increases, but the compressive strength, tensile strength, and flexural strength increase to a certain extent. Through SEM analysis, it is found that SF restrains the development of cracks and improves the strength of concrete.


2014 ◽  
Vol 665 ◽  
pp. 147-150 ◽  
Author(s):  
Ping Hua Zhu ◽  
Yi Lei

The strength properties of recycled aggregate concrete (RAC) using aggregates from repeatedly recycling concrete waste were studied. The relationships between cube compressive strength and splitting tensile strength and between each strength and replacement ratio of recycled aggregate to natural aggregate were established. The results showed that the strength properties of RAC with the design strength of 30MPa can be satisfied when the quality of recycled coarse and fine aggregates met respectively the needs of Grade II in GB/T25177-2010 and Grade III in GB/T25176-2010, with the replacement ratio to natural coarse aggregate and natural fine aggregate no more than 70% and 50%. Both strengths decreased and then increased for a while before descending again with increasing replacement ratio of recycled coarse aggregate, and decreased continuously with the increase of replacement ratio of recycled fine aggregate. The relationship between cube compressive strength and splitting tensile strength of RAC was found to be exponential function.


2021 ◽  
Vol 17 (4) ◽  
pp. 306-311
Author(s):  
S.A. Alabi ◽  
C. Arum

The increasing demand, diminishing supplies, and growing pressure on natural resources have necessitated recycling and reusing waste. Several kinds of research have been done on the reuse and recycling of debris from building projects. Thus, with a view to the reuse of waste materials, the elimination of environmental contamination, the reduction of overhead costs of concrete, and the extension of the service life of concrete structures, this research aimed to study the feasibility of utilizing recycled concrete aggregate (RCA) with constant inclusion of waste steel fibre (LWSF) in concrete by evaluating its workability, compressive and splitting tensile strengths. A concrete mix ratio of 1:2:4 by weight of cement, sand, and granite was adopted with a water-cement ratio of 0.45. Five different concrete mixes were prepared in this study; one normal aggregate concrete (NAC) and four (4) other mixes with 25%, 50%, 75%, and 100% recycled aggregate content with a constant 1.5% addition of LWSF. The result of workability shows a reduction with an increase in the percentage replacement level. The recycled aggregate concrete (RAC) was characterized by lower compressive strength as compared with the NAC. When the replacement ratio increased from 25% to 50%, a significant reduction of about 14% and 30% were observed in the compressive strength at 7-days, but at 28-days slight increase in the compressive strength was observed. Also, a decrease in splitting tensile strength as the percentage replacement of crushed granite (CG) with RCA is increased was observed. Overall, the findings showed that the RAC-containing LWSF is environmentally sustainable and would significantly reduce the global greenhouse impact and building materials' overall quality. Keywords: Recycled concrete, lathe waste, steel fibre, compressive strength, tensile strength


CivilEng ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 326-350
Author(s):  
Osamah Obayes ◽  
Emad Gad ◽  
Tilak Pokharel ◽  
Jessey Lee ◽  
Kamiran Abdouka

This article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age concrete. Results obtained indicate that the relationship between the splitting tensile strength and concrete compressive strength can be approximated with a power function between 0.7 and 0.8, and this correlation is not affected by age. Fracture energy of the concrete and modulus of elasticity values obtained in this study correlate well with the square root of the compressive strength and it was found that this relationship holds true for all hydration ages investigated in this paper. Inverse analysis on the wedge-splitting test was conducted to determine the direct tensile strength. Values of tensile strength obtained from the inverse analysis have been validated numerically by carrying out finite element analysis on the wedge split, and anchor pull-out tests. The ratio of the tensile strength obtained from the inverse analysis to the splitting tensile strength was found to be in the range of 0.5–0.9 and 0.7 on average.


2021 ◽  
Vol 6 (2) ◽  
pp. 17
Author(s):  
Mohamad Ali Ridho B K A ◽  
Chayut Ngamkhanong ◽  
Yubin Wu ◽  
Sakdirat Kaewunruen

The recycled aggregate is an alternative with great potential to replace the conventional concrete alongside with other benefits such as minimising the usage of natural resources in exploitation to produce new conventional concrete. Eventually, this will lead to reducing the construction waste, carbon footprints and energy consumption. This paper aims to study the recycled aggregate concrete compressive strength using Artificial Neural Network (ANN) which has been proven to be a powerful tool for use in predicting the mechanical properties of concrete. Three different ANN models where 1 hidden layer with 50 number of neurons, 2 hidden layers with (50 10) number of neurons and 2 hidden layers (modified activation function) with (60 3) number of neurons are constructed with the aid of Levenberg-Marquardt (LM) algorithm, trained and tested using 1030 datasets collected from related literature. The 8 input parameters such as cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age are used in training the ANN models. The number of hidden layers, number of neurons and type of algorithm affect the prediction accuracy. The predicted recycled aggregates compressive strength shows the compositions of the admixtures such as binders, water–cement ratio and blast furnace–fly ash ratio greatly affect the recycled aggregates mechanical properties. The results show that the compressive strength prediction of the recycled aggregate concrete is predictable with a very high accuracy using the proposed ANN-based model. The proposed ANN-based model can be used further for optimising the proportion of waste material and other ingredients for different targets of concrete compressive strength.


Sign in / Sign up

Export Citation Format

Share Document