Mechanical properties of natural fibre polymer composites

2017 ◽  
Vol 37 (9) ◽  
pp. 879-895 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Harendra K. Narang ◽  
Somnath Bhattacharya

Abstract Extensive efforts have been made in the last decade for the development of natural fibre composites. This development paved the way for engineers and researchers to come up with natural fibre composites (NFCs) that exhibit better mechanical properties. The present review is based on the mechanical properties of jute, abaca, coconut, kenaf, sisal, and bamboo fibre-reinforced composites. Before selecting any NFC for a particular application, it becomes necessary to understand its compatibility for the same, which can be decided by knowing its mechanical properties such as tensile, flexural, and impact strengths. This review paper emphasises on the factors influencing the mechanical properties of NFCs like the type of matrix and fibre, interfacial adhesion, and compatibility between matrix and fibre. Efforts are also made to unveil the research gaps from the past literatures, as a result of which it is inferred that there is very limited work published in the field of vibration incorporating potential fillers such as red mud and fly ash with NFCs.

2018 ◽  
Vol 32 (9) ◽  
pp. 1282-1302 ◽  
Author(s):  
T Rajmohan ◽  
R Vinayagamoorthy ◽  
K Mohan

In the modern years, natural fibre composites have been converted into significant materials in many industries such as automotive, aerospace and and so on. Several types of natural fibre composites, particularly plant-based fibre composites, have been developed and tested. However, their mixed nature, engineer’s requirement of experience, an understanding of machinability databases, limit setting and trouble in manufacturing are barriers to extensive use of composites. The final shape of the natural fibre–reinforced composites (NFRCs) are obtained by conventional and unconventional machining. Machining of these composites generates confront due to the heterogeneous and anisotropic nature. Different methodologies and tools are intended to overcome the machining defects. In this article, a wide range of literature review on machining of NFRCs is examined with focus on conventional and unconventional machining operation. This article also discusses the influences of machining parameters and optimum conditions for machining of NFRCs.


2014 ◽  
Vol 591 ◽  
pp. 7-10 ◽  
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran

Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.


2020 ◽  
pp. 002199832097681
Author(s):  
DKK Cavalcanti ◽  
MD Banea ◽  
JSS Neto ◽  
RAA Lima

In this work, a comparative analysis of the mechanical and thermal properties of polyester and epoxy single and hybrid natural fibre-reinforced composites was performed. Pure jute, jute + curauá and jute + sisal composites with two distinct thermoset polymer resins (an epoxy and a polyester) were produced. Tensile, flexural and impact tests were carried out, in accordance to ASTM standards, to investigate and compare the mechanical properties of the composites as a function of matrix and hybridization. In addition, a thermogravimetric analysis (TGA) was used to complete the comparative analysis of the thermal properties. Finally, a scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. It was found that the hybridization process improved the mechanical properties of the non-hybrid jute fibre based composites for both matrices used. The resin used as matrix plays an important role on the mechanical properties of the composites. The epoxy matrix based composites presented higher tensile strength, while the polyester based composites presented higher tensile and flexural stiffness as well as higher impact energy, when compared to the epoxy-based composite. TGA analysis showed that the thermal stability of epoxy-based composites was higher compared to the polyester-based composites.


2012 ◽  
Vol 44 (2) ◽  
pp. 85-140 ◽  
Author(s):  
Manik Bhowmick ◽  
Samrat Mukhopadhyay ◽  
Ramasamy Alagirusamy

2020 ◽  
Vol 18 (1) ◽  
pp. 275-286 ◽  
Author(s):  
Raquel Ortega ◽  
Mario D. Monzón ◽  
Zaida C. Ortega ◽  
Eoin Cunningham

AbstractThe interest in natural fibre reinforced composites is growing in industrial applications due to natural fibres being an attractive alternative to synthetic fibres. However, it is necessary to improve the fire behaviour of the material because natural fibres have a high combustibility. The objective of this work is to evaluate the fire resistance of polymer composites reinforced with natural fibre fabric, using magnesium hydroxide as flame retardant for the polymeric matrix and alkali treatment for the fibre. The types of fabric are banana, banana with cotton and linen; and long banana fibre has been used for the formation of a nonwoven. The fire test is carried out based on ISO 9773 standard and the effect of the additive has been studied, chemical treatment, type of fabric and number of layers. Through statistical analysis, it is concluded that the flame propagation speed has a decreasing relation with respect to the percentage, but it decreases the mechanical properties considerably. In addition, the number of layers and type of fabric influence the fire properties. Finally, it is concluded that composites reinforced with linen fabric have the best mechanical properties, but banana nonwoven with 60% additive has the best fire behaviour.


2010 ◽  
Vol 11 (8) ◽  
pp. 1181-1186 ◽  
Author(s):  
J. A. M. Ferreira ◽  
C. Capela ◽  
J. D. Costa

2003 ◽  
Vol 12 (6) ◽  
pp. 096369350301200 ◽  
Author(s):  
S. Goutianos ◽  
T. Peijs

Currently most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The main problem in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they can not be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g. unidirectional composites) similar to off-axis composites. Additionally, a high level of twist decreases the permeability of the yarns. This problem is addressed in the current work using yarns based on both long and short flax fibres.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 973
Author(s):  
Md Syduzzaman ◽  
Md Abdullah Al Faruque ◽  
Kadir Bilisik ◽  
Maryam Naebe

The increasing global environmental concerns and awareness of renewable green resources is continuously expanding the demand for eco-friendly, sustainable and biodegradable natural fibre reinforced composites (NFRCs). Natural fibres already occupy an important place in the composite industry due to their excellent physicochemical and mechanical properties. Natural fibres are biodegradable, biocompatible, eco-friendly and created from renewable resources. Therefore, they are extensively used in place of expensive and non-renewable synthetic fibres, such as glass fibre, carbon fibre and aramid fibre, in many applications. Additionally, the NFRCs are used in automobile, aerospace, personal protective clothing, sports and medical industries as alternatives to the petroleum-based materials. To that end, in the last few decades numerous studies have been carried out on the natural fibre reinforced composites to address the problems associated with the reinforcement fibres, polymer matrix materials and composite fabrication techniques in particular. There are still some drawbacks to the natural fibre reinforced composites (NFRCs)—for example, poor interfacial adhesion between the fibre and the polymer matrix, and poor mechanical properties of the NFRCs due to the hydrophilic nature of the natural fibres. An up-to-date holistic review facilitates a clear understanding of the behaviour of the composites along with the constituent materials. This article intends to review the research carried out on the natural fibre reinforced composites over the last few decades. Furthermore, up-to-date encyclopaedic information about the properties of the NFRCs, major challenges and potential measures to overcome those challenges along with their prospective applications have been exclusively illustrated in this review work. Natural fibres are created from plant, animal and mineral-based sources. The plant-based cellulosic natural fibres are more economical than those of the animal-based fibres. Besides, these pose no health issues, unlike mineral-based fibres. Hence, in this review, the NFRCs fabricated with the plant-based cellulosic fibres are the main focus.


Sign in / Sign up

Export Citation Format

Share Document