Spatial Structure of Land Use Based on Fractal Theory: Taking Shaoguan as an Example

2014 ◽  
Vol 598 ◽  
pp. 747-752 ◽  
Author(s):  
Wang Wei ◽  
Xiao Yuan Chen

Based on fractal theory, this paper analyzed spatial structure of land use and calculated fractal dimension and stability in Shaoguan. And then the paper revealed the various types of land use spatial differentiation. The results showed that the spatial mosaic structure of woodland patches was the smallest on complexity, but strongest stability. Spatial mosaic structure of urban town rural settlements was smaller on complexity, but stronger stability. Spatial mosaic structure of cultivated land and orchard and grassland and unused land were large on complexity, but poor stability. Spatial mosaic structure of industrial land and transportation and water were larger on complexity, but less stability. The complexity and stability of each land use type spatial mosaic structure was obvious differences. The biggest difference was transportation land, followed by cultivated land, water, grassland, unused land, woodland, urban town rural settlements and orchard, industrial land spatial differentiation minimum.

Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 249
Author(s):  
Quanfeng Li ◽  
Zhe Dong ◽  
Guoming Du ◽  
Aizheng Yang

The intensified use of cultivated land is essential for optimizing crop planting practices and protecting food security. This study employed a telecoupling framework to evaluate the cultivated land use intensification rates in typical Chinese villages (village cultivated land use intensifications—VCLUIs). The pressure–state–response (PSR) model organizes the VCLUI indexes including the intensity press, output state, and structural response of cultivated land use. Empirical analysis conducted in Baiquan County, China, indicating that the cultivated land use intensification levels of the whole county were low. However, the intensifications of villages influenced by physical and geographic locations and socioeconomic development levels varied significantly. This paper also found that variations in the VCLUIs were mainly dependent on new labor-driven social subsystem differences. Thus, the expanding per capita farmland scales and increasing numbers of new agricultural business entities were critical in improving the VCLUI. Overall, the theoretical framework proposed in this study was demonstrated to be effective in analyzing interactions among the natural, social, and economic subsystems of the VCLUI. The findings obtained in this study potentially have important implications for future regional food security, natural stability, and agricultural land use sustainability.


Author(s):  
Yuejuan Yang ◽  
Kun Wang ◽  
Di Liu ◽  
Xinquan Zhao ◽  
Jiangwen Fan ◽  
...  

Being subject to climate change and human intervention, the land-use pattern in the agro-pastoral ecotone of Northern China has undergone complex changes over the past few decades, which may jeopardize the provision of ecosystem services. Thus, for sustainable land management, ecosystem services should be evaluated and monitored. In this study, based on Landsat TM/ETM data, we quantitatively evaluated the losses of ecosystem service values (ESV) in three sections of the agro-pastoral ecotone from 1980–2015. The results were as follows: (1) the main characteristic of the land conversions was that a large area of grassland was converted into cultivated land in the agro-pastoral ecotone; (2) on the spatial scale, the ESV losses of the agro-pastoral ecotone can be called an “inclined surface” in the direction of the northeast to southwest, and the northeastern section of the agro-pastoral ecotone lost more ESV than the middle and northwest sections (p < 0.05), on the temporal scale, the order of losses was 1990–2000 > 1980–1990 > 2000–2015; (3) the agro-pastoral ecotone lost more ESV, which was mainly due to four kinds of land conversion, which were grassland that was transformed into cultivated land, grassland transformed into unused land, grassland transformed into built-up areas, and cultivated land transformed into built-up areas; (4) although these land conversions were curbed after the implementation of protection policies at the end of the 1990s, due to reduced precipitation and increasing temperatures, the agro-pastoral ecotone will face a more severe situation in the future; and, (5) during the period of 1990–2015, the overall dynamic processes of increasing population gradually expanded to the sparsely populated pastoral area. Therefore, we believe that human interventions are the main cause of ecological deterioration in the agro-pastoral ecotone. This study provides references for fully understanding the regional differences in the ecological and environmental effects of land use change and it helps to objectively evaluate ecological civilization construction in the agro-pastoral ecotone of Northern China.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yanpeng Gao ◽  
Wenjun Chen

The countryside is the habitat of food, ecology, and culture, and the indispensable basis for human survival and development. Assessing the spatial and temporal evolution of rural settlements contributes to the promotion of rural scientific developments. This study used the fractal theory, center-of-gravity model, and spatial syntax to analyze the spatial and temporal evolution of Shenyang Ciyutuo Subdistrict and its influencing factors based on geospatial data from 2009‒2019, from the perspectives of internal characteristics and external morphological changes. In terms of the external characteristics, from 2009‒2019, the compactness index increased from 0.414 to 0.454, the expansion rate increased from 1.17% to 3.11%, and the expansion intensity increased from 0.05% to 0.15%. From 2014‒2019, the western part of the subdistrict experienced the maximum expansion rate and expansion intensity. The center-of-gravity of the construction land shifted to the west and southwest. The internal characteristics of land use depended on geographical conditions. Clusters of rural settlements were formed in a north-south direction due to the topography and along the riverside in a band-like manner. From 2009‒2019, the integration level of the subdistrict improved and the scale and number of integration axis increased, forming a multicore tree-shaped structure. Pearson’s correlation analysis showed that urbanization is the main factor affecting the spatial and temporal land-use evolution, with transportation convenience, industrial park, and proximity to the river having little effects. This study provides a theoretical basis for the development of Ciyutuo Subdistrict and provides a reference for the development of similar commercial towns.


2021 ◽  
Vol 13 (23) ◽  
pp. 13064
Author(s):  
Yan Sun ◽  
Yuanyuan Chang ◽  
Junna Liu ◽  
Xiaoping Ge ◽  
Gang-Jun Liu ◽  
...  

The rapid development of urbanization and industrialization in coastal China in the past 20 years has exerted a huge squeezing effect on agricultural land use. The phenomenon of non-grain production on cultivated land (NGP) is very common, seriously threatening the protection of high-quality arable land and national food security. In order to find out the overall situation regarding NGP on cultivated land in coastal China, this study revealed the spatial differentiation of NGP and its main driving factors by spatial autocorrelation analysis, multiple linear regression models and geographically weighted regression analysis (GWR). The results show that: (1) in 2018, the non-grain cultivated land area of 11 provinces along the coast of China was about 15.82 × 106 hm2, accounting for 33.65% of the total cultivated land area. (2) The NGP rate in 11 provinces gradually decreased from south to north, but the NGP area showed two peak centers in Guangxi province and Shandong province, then decreased gradually outwards. (3) The low economic benefit of the planting industry (per capita GDP and urban-to-rural disposable income ratio) was the most important driving force, leading to the spatial differentiation of NGP, while the number of rural laborers and land transfer areas also acted as the main driving factors for the spatial differentiation of NGP. However, the influence of each driving factor has obvious spatial heterogeneity. The non-grained area and the non-grain production rate at the municipal level were completely different from those at the provincial level, and the spatial heterogeneity was more prominent. In the future, the local government should control the disorganized spread of NGP, scientifically set the bottom line of NGP, reduce the external pressure of NGP, regulate multi-party land transfer behavior, and strengthen land-use responsibilities. This study can provide a scientific foundation for adjusting land-use planning and cultivated land protection policies in China and other developing countries.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
Xi-hong Lian ◽  
Yuan Qi ◽  
Hong-wei Wang ◽  
Jin-long Zhang ◽  
Rui Yang

Water yield is an important ecosystem service, which is directly related to human welfare and affects the sustainable development. Using the integrated valuation of environmental services and tradeoffs model (InVEST model), we simulated the dynamic change of water yield in Qinghai lake watershed, Qinghai, China, and verified the simulation results. This paper emphatically explored how precipitation change and land use/land cover change (LUCC) affected the change of water yield on the spatial and temporal scales. Before 2004, the areas of cultivated land and unused land showed a dramatic increasing tendency, while forestland and water area presented a decreasing trend. After 2004 cultivated land changed slowly, unused land decreased. Grassland revealed a general trend of decline during 1977–2018, while built-up land basically presented a linear increase. The results show that water yield fluctuated and increased during 1977–2018. From 1977 to 2000, the mean water yield in each sub-watershed showed an increasing trend and afterward a decreasing one. After 2000, the sub-watersheds basically showed an increasing tendency. There was a strong correlation, with a correlation coefficient of 0.954 ** (** correlation is significant at the 0.01 level), between precipitation and water yield. Land use/land cover change can change the hydrological state of infiltration, evapotranspiration, and water retention. Meanwhile, the correlation between built-up land and water yield was the highest, with a correlation coefficient of 0.932, followed by forestland, with a correlation coefficient of 0.897. Through the analysis of different scenarios, we found that compared with land use/land cover change, precipitation played a more dominant role in affecting water yield.


2018 ◽  
Vol 10 (10) ◽  
pp. 3616 ◽  
Author(s):  
Chong Zhao ◽  
Yong Zhou ◽  
Xigui Li ◽  
Pengnan Xiao ◽  
Jinhui Jiang

Cultivated land is an important carrier of grain production, and scientific assessing of cultivated land productivity is of great significance to ensure food security. This paper assessed the overall productivity of cultivated land in Yuanjiang city from the perspectives of quantitative structure, spatial distribution and correlation with national land use. We applied statistical and GIS (geographic information system) spatial analysis methods to 16 secondary indicators of productivity. The results showed that the productivity index of cultivated land ranged from 1642.79 to 4140.09, concentrated in classes 2–6, among the most productive of 15 classes in total. The cultivated productivity indexes of most towns showed quantitative structural patterns of “inverted pyramid” and “dumbbell” types. Cultivated lands with high productivity showed a spatial distribution that decreased from the north to the south and increased from the center to the periphery. The spatial distribution of the higher-level classes in the cultivated land productivity index and the national cultivated land use index was similar. The correlation coefficient between the indexes for cultivated land productivity and the annual standard crop yield was 0.8817, implying that the index reflected local grain production capacity very well. In general, the research offered a reference and technical support for the sustainable use of cultivated land resources and enhanced regional cultivated land production capacity.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 514
Author(s):  
Dengyu Yin ◽  
Xiaoshun Li ◽  
Guie Li ◽  
Jian Zhang ◽  
Haochen Yu

Human activities and environmental deterioration have resulted in land use transition (LUT), which seriously affects the ecosystem service value (ESV) of its region. Therefore, relevant policy measures are urgently needed. Nevertheless, research on the relationships between LUTs and ESVs from the overall watershed scale is lacking. Thus, the geo-information Tupu method was applied to analyze the dynamic patterns of LUT based on land use data from 1990, 2000, 2010, and 2018 of the Yellow River Basin (YRB). Then, a newly revised ecosystem services calculation method was utilized to the responses of ESV to LUTs. The results indicated that the Tupu units of the LUT were mainly based on the mutual transformation of grassland and unused land, and cultivated land and forestland, which were widely distributed in the upper and middle reaches of the basin. The spatial distribution was concentrated, and the expansion’s trend was also obvious. Moreover, the conversion of cultivated land into construction land was mainly distributed in the lower reaches of the basin. During 1990–2018, the total ESV fluctuated and increased (+10.47 × 108 USD) in the YRB. Thereinto, the ESV of grassland (45%) and forestland (30%) made the greatest contribution to the total ESV. As for different reaches, the ESV increased in the upstream, but decreased in the midstream and the downstream. In terms of contribution rate, the conversion of unused land into grassland (12.477%) and grassland into forestland (9.856%) were the main types to enhance the ESV in the YRB, while the conversion of forestland into grassland (−8.047%) and grassland to unused land (−7.358%) were the main types to reduce the ESV. Furthermore, the range of ecological appreciation zones was widely distributed and scattered, while the range of ecological impairment zones was gradually expanded. These findings could have theoretical support and policy implications for land use planning and environmental services in the YRB.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1513-1516
Author(s):  
Rui Qing Qie

Based on the spatial land use database of Mingcheng town of Panshi City in Jilin, fractal dimension and stability of land use types are studied by using GIS technology and fractal theory. The land use is classified into 7 types: cropland, garden plot, wood land, water, road land, industrial and mining, residential areas, unused land, and other lands. The fractal dimension for the patches of the land use types is analyzed. Results showed that all the land use types have fractal characteristics and the fractal dimension (D) values vary from 1.1028 to 1.6638. In terms of the land use stability given by the fractal dimension, the order of the land use types from high to low is water, industrial and mining residential areas, cropland, wood land, unused land, road land, garden plot. And land use shape index, fragmentation index and the separation index in the spatial distribution law are largely affected by human activities influence and interference, then it can provided reference for the reason utilizing of land resource.


2018 ◽  
Vol 246 ◽  
pp. 02017
Author(s):  
Longqiang Su

Based on the land use data in midstream of the Heihe River Basin in 1986, the CLUE-S model was used to simulate the land use distribution in 2000. In addition, the simulated map was verified by the land use map in 2000. Then the spatial pattern of land used in 2015 under the scenario without water diversion was simulated. The results show that the CLUE-S model could be applied to simulate the spatial pattern of land use changes in midstream of the Heihe River basin. Under both scenarios, cultivated land and construction land area showed a tendency of increasing. Forestland, pastureland and unused land showed a tendency of decreasing, while the convert tendency from unused land to other land use types was accelerated. The water surface area decreased under the scenario without water diversion, while under ecological water diversion scenario it showed a tendency of increasing. After the implementation of water diversion, the speed was accelerated. Under the scenario without water diversion, the main types of land use changes were cultivated land, pastureland and water surface area. Conversely, they were cultivated land, pastureland and unused land.


Sign in / Sign up

Export Citation Format

Share Document