Switching Control Blending Methodology with Single Parameter Dependent and its Application to Tiltrotor

2014 ◽  
Vol 602-605 ◽  
pp. 1015-1018
Author(s):  
Qi Wang ◽  
Wen Hai Wu ◽  
Bin Tuan Wang ◽  
Shuang Zhong Ya Zhang

Because direct switching between controllers will generate abrupt change of control signal causing severe actuators workload, a switching control blending methodology is presented in this paper. By the blending of weighted multi-controllers output signals in which the weight value depends on a single switching parameter, the control signals can be switched smoothly and the closed-loop dynamic acts continuously. In this method, the design of multi-controllers can use any available methods while the closed-loop switching stability is insured by rational division of closed-loop state-space along the switching parameter. The closed-loop switching stability under control blending is presented, and a state-space division algorithm is developed. With the application to the tiltrotor, the simulation results show that the presented control methodology can provide all modes control ability and make control signals switched smoothly.

Author(s):  
Mounir Hammouche ◽  
Philippe Lutz ◽  
Micky Rakotondrabe

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.


Author(s):  
Jiwen Fang ◽  
Zhili Long ◽  
Lufan Zhang

This paper presents macro-micro dual-drive stages using the hybrid actuators composed of voice coil motor (VCM) and piezoelectric actuator (PZT actuator). The macro stage driven by voice coil motor can achieve large travel range and coarse positioning. The micro stage with an embedded flexure hinges mechanism, actuated by the PZT actuator, can realize short range but high precision positioning. To gain precise performance, the dynamic modes of macro stage and micro stage are equivalent to mass-damping-spring system in this research. According to theoretical analysis, the output displacement of micro stage is proportional to the extension of the PZT Actuator. The linear relationship will be used to the motion control of micro stage. To realize perfect performance, the variable gain PID controller is designed to control the macro stage. In order to prevent saturation and damage of PZT actuator, dual switching control, positioning error threshold and small vibration displacement, are applied to the switching control. Beyond the micro stage range, the micro stage must be kept in its equilibrium position while the VCM instead reaches a long travel. The PZT actuator controller is used to compensate for position error after switching control. When the error is less than a set thres hold value, the error signal is added into the micro control loop. So the macro-micro dual-drive stages are working together to reduce the positioning error. The relationship between PZT actuator of closed loop and input voltage is linear by theoretical analysis and experiment test. So the micro stage uses an open servo loop structure, but the PZT actuator is controlled with PI controller in local closed loop in order to eliminate the nonlinear of PZT. The experimental system used in this study is single-axis dual-driving stages. Turbo PMAC PCI-Lite is the core of the whole system and executes PLC programs with motion programs. Experiments show that the steady state error of dual-drive stage is nano level. The steady state error of dual-drive stage can be improved. So dual-drive stages can increase the positioning accuracy of the whole system and the performance is superior to the single VCM stage.


2021 ◽  
Vol 850 (1) ◽  
pp. 012036
Author(s):  
R Latha ◽  
S Adharsh Babu ◽  
M Vivek Kumar

Abstract Electric vehicles are the future of mobility solutions. The electric vehicles are driven by an electric motor with the help of a power electronic interface. The power electronic interface needs to be designed in an efficient way both in mechanical and electrical aspects. This paper proposes the concept of design, simulation and analysis of a 10 kW Multi-Device Interleaved DC-DC Boost Converter (MDIBC) to drive a 4 kW Induction Motor. The motor is driven from the MDIBC through an inverter with SPWM technique. The variation in DC link voltage due to motor is controlled and stabilized to give a constant DC of 400 V. MDIBC consists of semi-controlled switches topology excited by Phase Shifted PWM technique to reduce the ripple current in interleaving inductors. The dual loop control methodology using PI controller is adopted to reduce the ripple in input inductor current and DC link voltage. The open loop simulation and closed loop simulation are done in MATLAB Simulink environment. The simulation results show that the overshoots and steady state error in inductor currents and output voltage are reduced in addition with reduction in current and voltage ripples.


2005 ◽  
Vol 42 (5) ◽  
pp. 1099-1108 ◽  
Author(s):  
Mehul P. Patel ◽  
Richard M. Kolacinski ◽  
Troy S. Prince ◽  
T. Terry Ng ◽  
James H. Myatt

2019 ◽  
Vol 794 ◽  
pp. 9-18
Author(s):  
Yoshihiro Tomita ◽  
Makoto Uchida

We proposed constitutive equations for the strain rate and temperature-dependent behavior of rubber by employing the nonaffine molecular chain network theory and reptation theory. The finite element homogenization method along with the proposed constitutive equations have the capability of predicting the deformation behaviors of particle-filled rubber under changes in volume fractions, distribution patterns, and size heterogeneity of the particles without additional parameters. The only existing problem is the modest estimation of the stiffness of rubber immediately after the abrupt change in strain rate direction (ACSD) as can be seen in the cyclic deformation behavior. We restricted our attention to the generalization of our nonaffine molecular chain network theory to overcome the problems associated with ACSD. We consider the effect of the delay of deformation in surrounding chains on the elasticity modulus by introducing an amplification parameter dependent on the current chain stretch and direction of strain rate immediately after ACSD. The potential of the proposed constitutive equations is examined against the predictability of the experimentally obtained deformation exhibiting ACSD.


2018 ◽  
Vol 120 (6) ◽  
pp. 2975-2987 ◽  
Author(s):  
Brice Williams ◽  
Anderson Speed ◽  
Bilal Haider

The mouse has become an influential model system for investigating the mammalian nervous system. Technologies in mice enable recording and manipulation of neural circuits during tasks where they respond to sensory stimuli by licking for liquid rewards. Precise monitoring of licking during these tasks provides an accessible metric of sensory-motor processing, particularly when combined with simultaneous neural recordings. There are several challenges in designing and implementing lick detectors during head-fixed neurophysiological experiments in mice. First, mice are small, and licking behaviors are easily perturbed or biased by large sensors. Second, neural recordings during licking are highly sensitive to electrical contact artifacts. Third, submillisecond lick detection latencies are required to generate control signals that manipulate neural activity at appropriate time scales. Here we designed, characterized, and implemented a contactless dual-port device that precisely measures directional licking in head-fixed mice performing visual behavior. We first determined the optimal characteristics of our detector through design iteration and then quantified device performance under ideal conditions. We then tested performance during head-fixed mouse behavior with simultaneous neural recordings in vivo. We finally demonstrate our device’s ability to detect directional licks and generate appropriate control signals in real time to rapidly suppress licking behavior via closed-loop inhibition of neural activity. Our dual-port detector is cost effective and easily replicable, and it should enable a wide variety of applications probing the neural circuit basis of sensory perception, motor action, and learning in normal and transgenic mouse models. NEW & NOTEWORTHY Mice readily learn tasks in which they respond to sensory cues by licking for liquid rewards; tasks that involve multiple licking responses allow study of neural circuits underlying decision making and sensory-motor integration. Here we design, characterize, and implement a novel dual-port lick detector that precisely measures directional licking in head-fixed mice performing visual behavior, enabling simultaneous neural recording and closed-loop manipulation of licking.


2012 ◽  
Vol 63 (6) ◽  
pp. 365-372
Author(s):  
Chinnadurai Nagarajan ◽  
Muthusamy Madheswaran

This paper presents a closed loop CLL-T (capacitor inductor inductor) series parallel resonant converter (SPRC) has been simulated and the performance is analyzed. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The stability and AC analysis of CLL-T SPRC has been developed using state space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.


2014 ◽  
Vol 1006-1007 ◽  
pp. 711-714
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

This paper investigates the problems of stability analysis and stabilization for a class of switched fuzzy discrete-time systems. Based on a common Lyapunov functional, a switching control method has been developed for the stability analysis of switched discrete-time fuzzy systems. A new stabilization approach based on a switching parallel distributed compensation scheme is given for the closed-loop switched fuzzy systems. Finally, the illustrative example is provided to demonstrate the effectiveness of the techniques proposed in this paper.


Author(s):  
Rama K. Yedavalli ◽  
Nagini Devarakonda

This paper addresses the issue of determining the most desirable ‘Nominal Closed Loop Matrix’ structure in linear state space systems, by combining the concepts of ‘Quantitative Robustness’ and ‘Qualitative Robustness’. The qualitative robustness measure is based on the nature of interactions and interconnections of the system. The quantitative robustness is based on the nature of eigenvalue/eigenvector structure of the system. This type of analysis from both viewpoints sheds considerable insight on the desirable nominal system in engineering applications. Using these concepts it is shown that a specific quantitative set of matrices labeled ‘Quantitative Ecological Stable (QES) Matrices’ have features which qualify them as the most desirable nominal closed loop system matrices. Thus in this paper, we expand on the special features of the determinant of a matrix in terms of self-regulation, interactions and interconnections and specialize these features to the class of ‘Quantitative Ecological Stable (QES)’ matrices and show that for checking its Hurwitz stability, it is sufficient to check the positivity of only the constant coefficient of the characteristic polynomial of a matrix in a higher dimensional ‘Kronecker’ space. In addition, it is shown that these matrices possess the most attractive property among any matrix class, namely that their Determinants possess convexity property. Establishment of this optimal nominal closed loop system matrix structure paves the way for designing controllers which qualify as robust controllers for linear systems with real parameter uncertainty. The proposed concepts are illustrated with many useful examples.


Sign in / Sign up

Export Citation Format

Share Document