Multilevel Inverter for Hybrid Energy Generation System

2014 ◽  
Vol 622 ◽  
pp. 127-131
Author(s):  
Vasudevan Karthikeyan ◽  
Venkatesan Jamuna ◽  
Abisha James

Applications of multilevel inverters have been widely accepted for high-power and high-voltage industry purposes. Their performance is very much superior to that of traditional two-level inverters due to reduced harmonic distortion and lower electromagnetic interference. In this paper a multilevel inverter circuit with reduced number of switches and symmetric voltage sources has been designed for hybrid generation system. The switching angles for various levels of the output are obtained by using the simple sine property. Finally, the 11-level inverter model is built using Matlab/ Simulink to validate this topology. The simulation results are presented.

2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


Multilevel inverters are widely used for high power and high voltage applications. The performance of multilevel inverters are superior to conventional two level inverters in terms of reduced total harmonic distortion, higher dc link voltages, lower electromagnetic interference and increased quality in the output voltage waveform. This paper presents a single phase hybrid eleven level multilevel inverter topology with reduced switch count to compensate the above mentioned disadvantages. This paper also presents various high switching frequency based multi carrier pulse width modulation strategies such as Phase Disposition PWM Strategy (PDPWM), Phase Opposition and Disposition PWM Strategy (PODPWM), Alternate Phase opposition Disposition PWM (APODPWM), Carrier Overlapping PWM (COPWM), Variable frequency carrier PWM (VFPWM), Third Harmonic Injection PWM (TFIPWM) applied to the proposed eleven level multilevel inverter and is analyzed for RL load. FFT analysis is carried out and total harmonic distortion, fundamental output voltage are calculated. Simulation is carried out in MATLAB/SMULINK.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1329 ◽  
Author(s):  
Ronak A. Rana ◽  
Sujal A. Patel ◽  
Anand Muthusamy ◽  
Chee woo Lee ◽  
Hee-Je Kim

We review the most common topology of multi-level inverters. As is known, the conventional inverters are utilized to create an alternating current (AC) source from a direct current (DC) source. The two-level inverter provides various output voltages [(Vdc/2) and (−Vdc/2)] of the load. It is a successive method, but it makes the harmonic distortion of the output side, Electromagnetic interference (EMI), and high dv/dt. We solve this problem by constructing the sinusoidal voltage waveform. This is achieved by a “multilevel inverter” (MLI). The multilevel inverter creates the output voltage with multiple DC voltages as inputs. Many voltage levels are combined to produce a smoother waveform. During the last decade, the multilevel inverter has become very popular in medium and high-power applications with some advantages, such as the reduced power dissipation of switching elements, low harmonics, and low EMIs. We introduce the information about several multilevel inverters such as the diode-clamped multilevel inverter (DC-MLI), cascaded H-bridge multilevel inverter (CHB-MLI), and flying-capacitor multilevel inverter (FC-MLI) with Power systems CAD (PSCAD) simulation. It is shown that THD is 28.88% in three level FC-MLI while THD is 18.56% in five level topology. Therefore, we can decrease the total harmonic distortion adopting the higher-level topology.


2013 ◽  
Vol 313-314 ◽  
pp. 876-881
Author(s):  
M.R. Rashmi ◽  
B. Anu

Nonconventional energy sources are playing important role in meeting current power/energy demands. However these sources cannot provide High voltage/power. For power conditioning and voltage amplification solid state power converters are very much essential. One such approach to obtain high voltage was to use cascaded multilevel inverter but cascaded multilevel inverters require separate DC sources and they cannot be used for regenerative applications. To overcome these limitations, a novel configuration is using diode clamped multilevel inverter is proposed here. . The conditioned DC voltage from photovoltaic cells or fuel cells or batteries is boosted and inverted by means of multistage Multilevel Inverters (MLI). Three different configurations are presented in this paper. From the simulation results of all three configurations, the topology which is found to be better is implemented in the real time. A proto type is developed to boost 40 V input DC to 100 V AC and the experimental results for the same are presented.


2019 ◽  
Vol 16 (2) ◽  
pp. 422-427
Author(s):  
S. Karthikeyan ◽  
K. Lakshmi ◽  
S. Sivaranjani ◽  
J. Karthika ◽  
T. Nandhakumar

Multilevel inverters are mainly used in high power and medium voltage applications to reduce the required voltage rating of the power semiconductor switching devices. Nowadays multilevel inverters are also preferred for various applications regardless of the power ratings because they can essentially realize lower harmonics with lower switching frequency and lower electromagnetic interference (EMI). However, it has some disadvantages such as increased number of components, complex Pulse Width Modulation control method, and voltage balancing problem. In this paper a new topology of cascaded multilevel inverter using reduced number of switches is introduced resulting in higher output voltage levels. There era five series connected H-bridges and the DC voltage is given in the ratio n0: n: n3:2n2:10n. The output voltage having 123 levels is obtained (61 positive voltage levels, 61 negative voltage levels and zero voltage levels). Reduced Total Harmonic Distortion (THD) makes them useful for electric vehicle, FACTS and has given option for various power applications. The proposed topology results in reduction of cost and has simplicity of control system. Therefore, the overall cost and complexity are greatly reduced particularly for higher output voltage levels.


Author(s):  
Durga Prasad Garapati ◽  
Jegathesan V. ◽  
Moorthy Veerasamy

The performances of multilevel inverters (MLIs) are of high competence when compared to the conventional two-level inverters due to reduced harmonic distortions, lower electromagnetic interference, and higher dc link voltages. However, the increased number of components, complex PWM control, and voltage-balancing problem, component failure in the circuit are some of the disadvantages. The topology preferred in this chapter provides a dc voltage in the shape of a staircase which approximates the rectified shape of a commanded sinusoidal wave to the bridge inverter, which in turn alternates the polarity to produce an AC voltage with lesser total harmonic distortion. This topology requires fewer components and hence it leads to a reduction of overall cost and complexity particularly for higher output voltage levels. The component fault diagnostic procedure is developed using wavelets transform tool. Finally, the experimental prototype is developed and validated with the simulation results for different loading conditions.


In high and medium AC power applications, multilevel inverters (MLI) have significant importance in modern days. The architecture of multi-level cascaded type inverter is preferred because of reduced harmonic distortion, high quality AC output power, least switching loss and minimum switching stress. The existing method uses 8-number of switches to generate 11-level AC voltage. A new design of 15-level multilevel inverter with 6-switching devices is proposed in this paper and DC supply devices are similar to existing method, which outcomes in less switching loss, less complexity of circuit design and less cost. The DC supply for multilevel inverter is taken from solar panel with MPPT technique. The new 6-switch multilevel inverter circuit topology, switching pattern and gate pulse making is explained in this paper. The fast Fourier transform (FFT) analysis of the outputs of 11-level and 15-level of multilevel inverters are related. The new 6-switch 15 level cascaded type inverter circuit has been intended and modeled by using MATLAB software Simulink tool. The simulation outcomes are displayed with less total harmonic distortion and reduced switching loss has been achieved.


2017 ◽  
Vol 66 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Riadh El Mehdi Belkacem ◽  
Redha Benzid ◽  
Noureddine Bouguechal

Abstract Reduction of the Total Harmonic Distortion (THD) in multilevel inverters requires resolution of complex nonlinear transcendental equations; in this paper we propose a combination of one of the best existing optimized hardware structures with the recent firefly algorithm, which was used to optimize the THD, through finding the best switching angles and guaranteeing the minimization of harmonics within a user defined bandwidth. The obtained THD through the simulation of the thirteen-level symmetric inverter has been reduced down to 5% (FFT of 60 harmonics). In order to validate the simulation results, a thirteen-level symmetric inverter prototype has been made, and practically experimented and tested with different loads. Consequently, the measured THD with resistive load was 4.7% on a bandwidth of 3 kHz. The main advantage of the achieved work is the reduction of the THD.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


Sign in / Sign up

Export Citation Format

Share Document