The fate and transformations of zinc added to soils

Soil Research ◽  
1997 ◽  
Vol 35 (4) ◽  
pp. 727 ◽  
Author(s):  
Y. B. Ma ◽  
N. C. Uren

A new sequential extraction procedure to remove specifically adsorbed forms of trace metals and easily reducible manganese (Mn) oxide fractions was used to study the fate and transformations of zinc (Zn) added to soils. Most of the endogenous Zn in field soils (75–87%) was found to exist in a residual fraction which is considered to be silicates, while the Zn added as a fertiliser in the field soils was found predominantly in an EDTA-extractable fraction and in association with iron (aluminium) [Fe (Al)] and Mn oxides. The Zn recently added to soils was found to be more in the reactive forms (water-soluble plus exchangeable and EDTA-extractable Zn) than the Zn added to field soils in association with long-term Zn application. With time, the EDTA-extractable Zn transformed into the unreactive forms (Zn associated with Fe (Al) and Mn oxides). The processes could be described by a diffusion equation. The apparent diffusion rate coefficients were found to be in the order of 10–10–10–11/s. The diffusion activation energy (Ea) was found to be 67 kJ/mol. The diffusion of Zn cations into microporous solids is probably a rate-limiting process. The transformation of reactive Zn into unreactive Zn was enhanced by elevated temperatures and by drying and rewetting. The drying and rewetting effect at relatively high temperature may be important in the processes which lead to decreases in the availability of Zn to plants.

2014 ◽  
Vol 641-642 ◽  
pp. 1141-1145 ◽  
Author(s):  
Hong Li Huang ◽  
Lin Luo ◽  
Jia Chao Zhang ◽  
Pu Feng Qin ◽  
Man Yu ◽  
...  

Pot experiments were performed to investigate the effect of compost amendment on the mobility of zinc through analysis of Zn fractions in heavy metal contaminated soil. The results showed that the total Zn concentration decreased 8.11%, 10.15%, 16.15%, 20.05%, 7.28% and 5.02% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil and Brassica juncea harvest, respectively. Zn was mostly concentrated in the residual fraction and Fe-Mn oxides fraction in soil. The percentage of Zn in water-soluble fraction, organic fraction and residual fraction had no correlation with the amount of compost amendment. The percentage of Zn in the exchangeable fraction decreased and the percentage of Zn in Fe-Mn oxides fractions increased obviously. Furthermore, the mobility factor of Zn decreased significantly from 19.20% without compost amendment to 19.09%, 18.70%, 18.15%, 16.45% and 16.12% after the amendment of 0, 20, 40, 60, 80, 100 g/kg compost to soil, the compost amendment could lowered the mobility and phytotoxicity of zinc through bound to Fe-Mn oxides.


1980 ◽  
Vol 17 (1) ◽  
pp. 90-105 ◽  
Author(s):  
A. Tessier ◽  
P. G. C. Campbell ◽  
M. Bisson

Water and suspended sediment samples were collected at 12 stations on the Yamaska and St. François Rivers, located in southeastern Quebec, and were analyzed for the trace metals Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn. The suspended sediment samples were subjected to a sequential extraction procedure designed to partition the particulate trace metals into five fractions: (1) exchangeable; (2) bound to carbonates; (3) bound to Fe–Mn oxides; (4) bound to organic matter; and (5) residual.Although suspended sediment levels as well as total soluble and particulate trace metal concentrations were highly variable in time and space, speciation patterns for each metal proved reasonably constant. Very small proportions of all metals, except Cd and Mn, were found in the exchangeable fraction, whereas high levels of all metals were present in the residual fraction; Fe–Mn oxides and organic matter constituted important transport phases for most metals. Deviations from this general behaviour were occasioned by man-induced perturbations (e.g., inputs of municipal sewage or mine waste water). At stations influenced by such factors, total particulate metal concentrations increased and the relative contribution of the residual fraction decreased. The trace metal content of fraction 3 proved to be particularly sensitive to anthropogenic inputs; other phases acting as trace metal sinks included those liberated in fractions 1 (Cd, Cu, Ni, Zn), 2(Cu, Ni, Zn), and 4(Cu, Ni).


Author(s):  
Mutia Oktarina Permai Yenny ◽  
Arief Hartono ◽  
Syaiful Anwar ◽  
Yumei Kang

Heavy metals have been reported to accumulate in sediment of Citarum River. The measurement of total heavy metals may not be able to provide information about the exact dimension of pollution, thus the determination of different fractions assumed great importance. This study was performed to determine chemical fractions of heavy metals (Cu, Ni, Cr, Pb and Cd) in sediment collected at 8 locations from Citarum River. The sequential extraction procedure was used to extract heavy metals in water-soluble, acid-soluble, MnO occluded, organically bound, FeO occluded and residual fraction in sediment. Bioavailability and potential ecological risk level of heavy metals were evaluated based on bioavailability factor (BF) and risk assessment code (RAC) method. The results showed that Cu, Ni, Cr were mostly in residual form, indicate those from geological sources. Cu had low bioavailability and no risk in all sediment samples of Citarum River. Ni and Cr each was found to have risk at 2 locations. Pb and Cd were found dominantly in non-residual fraction, suggest those from anthropogenic sources. BF and RAC analysis of Pb and Cd suggest that there is a potential risk to the aquatic environment.


2011 ◽  
Vol 52 (No. 2) ◽  
pp. 64-71 ◽  
Author(s):  
A. Hanč ◽  
P. Tlustoš ◽  
J. Száková ◽  
J. Balík

Cadmium mobility in sewage sludge amended by four types of ameliorative materials (lime, limestone, bentonite and zeolite) incubated under aerobic and anaerobic conditions for eight months was studied in the experiment. The most statistically significant decrease of available Cd extracted by 0.01 mol/l CaCl<sub>2</sub> was recorded in sludge between second and fourth months of incubation. As most effective stabilizers were found limestone and bentonite added into the sludge incubated under aerobic and anaerobic conditions respectively. The presence of air reduced Cd mobility in individual sludges more than lack of air. Cadmium was separated by sequential extraction into five fractions as water soluble, exchangeable, bound with Fe and Mn oxides, organically bound, and residual fraction. Sequential analysis showed decrease of Cd in exchangeable and oxide fractions in sludge treated by lime and limestone at the end of aerobic incubation. Cadmium was found in water soluble and exchangeable fractions in small portion, even so its content in these fractions was higher than determined in slighter 0.01 mol/l CaCl<sub>2 </sub>solution.


2016 ◽  
Vol 39 (1-2) ◽  
Author(s):  
Sadia Qayyum ◽  
Ibrar Khan ◽  
Yangguo Zhao ◽  
Farhana Maqbool ◽  
Changsheng Peng

AbstractMetal contamination of soil is due to mining, manufacturing and use of synthetic products (e.g. pesticides, paints, batteries, industrial waste and industrial or domestic sludge) which is a serious environmental problem. Hence, determining chemical forms of metals in soils is important to evaluate their mobility or bioavailability. Both artificial and contaminated soils were sequentially extracted to fractionate metals into the water soluble fraction (WSF), exchangeable fraction (EF), bound to carbonate fraction, bound to metal oxide fraction, organically bound fraction (OBF) and residual fraction (RF). In the case of contaminated soil, Pb and Cr are found to be associated with the carbonate fraction while in artificial soil, Pb bound to WSF and Cr with the Fe/Mn fraction. Chemical properties such as pH, electrical conductivity (EC) and textural classification of concerned soils were also analyzed. Percentage recovery was calculated to check the reliability of processes both in Pb and Cr, and it was found to be more in Cr (66% and 84%) in both artificial and contaminated soil than Pb (5% and 34%) in both soils. Analyses of extracts were carried out by atomic absorption spectrometry (AAS). Results were interpreted in terms of environmental mobility or bioavailability of metals.


Soil Research ◽  
2006 ◽  
Vol 44 (2) ◽  
pp. 135 ◽  
Author(s):  
G. L. Guo ◽  
Q. X. Zhou ◽  
P. V. Koval ◽  
G. A. Belogolova

Knowledge of the total content of trace metals is not enough to fully assess the environmental impact of polluted soils. For this reason, the determination of metal speciation in soil is important to evaluate its mobilisation capacity and behaviour in the environment. The sequential extraction procedure was used to separate 4 heavy metals (Cd, Pb, Cu, Zn) from contaminated Phaeozem in north-east China into 5 operationally defined geochemical species: exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residues. Neutral salts, dilute acids, and chelating reagents were used as single extractants for the functionally defined speciation. In the sequential extraction, the residual fraction was the most abundant pool for Pb, Cu, and Zn. A major portion (40–84%) of Pb, Cu, and Zn was associated with the residue. The speciation distribution of Pb, Cu, and Zn in the surface samples was similar to that in the subsurface, with residues > bound to organic matter > bound to Fe–Mn oxides > bound to carbonates > exchangeable. A significant amount (32–47%) of Cd persisted in the potential availability of the exchangeable fraction. The main part of Cd fractionation in the surface soil samples comprised exchangeable, carbonate, and Fe–Mn oxide fractions, whereas in the subsurface it comprised the residual and exchangeable phases. EDTA can be regarded as an extractant for assessing the plant-available species of Cd, Cu, and Zn; NH4Cl released electrostatically weakly bound metals and was used to estimate the mobile species. Assuming that metal mobility and bioavailability are related to their solubility and the contents in typical plants in the contaminated Phaeozem, Cd would be the main potential risk to animal health and groundwater safety in the area.


1995 ◽  
Vol 32 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Valérie Colandini ◽  
Michel Legret ◽  
Yves Brosseaud ◽  
Jean-Daniel Baladès

Porous pavements infiltrated with stormwater are faced with clogging problems: runoff particles seep and clog the pervious surface layer of these structures. Clogging material samples (in the form of sludge) have been collected in cleaning operations on the pervious asphalt. This study aims at characterizing these materials, particle size distribution, heavy metal contents by particle size, and studying interactions between metals and particles. A sequential extraction procedure proposed by the experts of the Community Bureau of Reference (B.C.R.) was applied to provide information about heavy metal distribution on particles and to evaluate interaction strength, and consequently potential metal mobility when chemical variations occurred in the environment. Mainly made up of sand, the materials are polluted with lead, copper, zinc and cadmium. The concentrations appeared to be linked with road traffic intensity. The heavy metal contents by particle size showed that the finer are the particles, the higher are the heavy metal concentrations. Heavy metals were found potentially labile; metals contents in the residual fraction (mineral fraction) represented less than 20 % of the total concentration. Cadmium and zinc were apparently more labile than lead and copper.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiko Katoh ◽  
Wataru Kitahara ◽  
Takeshi Sato

This study aimed to identify how the ratio of inorganic-to-organic components in animal manure compost (AMC) affected both lead immobilization and microbial activity in lead-contaminated soil. When AMC containing 50% or more inorganic fraction with high phosphorous content was applied to contaminated soil, the amounts of water-soluble lead in it were suppressed by over 88% from the values in the soil without compost. The residual fraction under sequential extraction increased with the inorganic fraction in the AMC; however, in those AMCs, the levels of microbial enzyme activity were the same or less than those in the control soil. The application of AMC containing 25% inorganic fraction could alter the lead phases to be more insoluble while improving microbial enzyme activities; however, no suppression of the level of water-soluble lead existed during the first 30 days. These results indicate that compost containing an inorganic component of 50% or more with high phosphorus content is suitable for immobilizing lead; however, in the case where low precipitation is expected for a month, AMC containing 25% inorganic component could be used to both immobilize lead and restore microbial activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Ashraf ◽  
M. J. Maah ◽  
I. Yusoff

This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.


1974 ◽  
Vol 52 (3) ◽  
pp. 754-758 ◽  
Author(s):  
S. H. Shin ◽  
C. J. Howitt

Several aqueous solvent systems were tested for their efficiency in extracting luteinizing hormone releasing hormone (LH-RH) from rat hypothalamus. Although LH-RH is a water-soluble decapeptide, neutral distilled water extracted only 10% of the LH-RH obtained using acid extraction methods. The efficiency of the acid extraction procedure suggests that in the hypothalamus the releasing hormone is bound to a relatively large molecular weight compound. Using the acidic extraction procedure, we found that hypothalamic LH-RH content is significantly lower in the castrated animal than in the normal rat.


Sign in / Sign up

Export Citation Format

Share Document