Qualitative Estimation Criterion of Direct Injection Diesel Engines Performance Prediction for Stationary and Industrial Applications

2014 ◽  
Vol 659 ◽  
pp. 205-210
Author(s):  
Vladimir Mărdărescu ◽  
Nicolae Ispas ◽  
Mircea Nastasoiu

Our approach is to define as accurately as possible, the opportunities of forecasting the environmental and energetically qualities of direct injection Diesel engines for stationary and industrial applications. This research requires the validation of new energy solutions or injection process. Knowing that test bench research of internal combustion engines is a task that requires highly qualified personnel and very expensive equipment for investigate the combustion process, a research program to define the best technical solution involves significant costs. The energetically solution of an internal combustion engine, similar to those examined in this paper, is defined by the following guidelines and parameters: - Control of mixture formation; - Compression ratio; - Average swirl intake number channel; - Geometry of the intake and exhaust cams; - Diagram of distribution; - Drive cam type injection pump; - Geometry of the combustion chamber; - Type and nozzle geometry (sack configuration and l / d ratio ); - Needle stroke; - The diameter and length of the injection pipe; - Amount of injector opening pressure (for hydraulic injectors); - Type of delivery valve; - Time of injection. Based on experience gained during the test at the test bed, we proposed a criterion for assessing qualitative performance of Diesel class discussed above. This criterion refers to environmental and energetically performance, as a prediction of performance at nominal regime, after shorten tests with cold engine.

2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Arthur R. Asoyan ◽  
Igor K. Danilov ◽  
Igor A. Asoyan ◽  
Georgy M. Polishchuk

A technical solution has been proposed to reduce the consumption of basic hydrocarbon fuel, to improve the technical, economic and environmental performance of internal combustion engines by affecting the combustion process of the fuel-air mixture with a minimum effective mass fraction of hydrogen additive in the fuel-air mixture. The burning rate of hydrogen-air mixtures is an order of magnitude greater than the burning rate of similar mixtures based on gasoline or diesel fuel, compared with the former, they are favorably distinguished by their greater detonation stability. With minimal additions of hydrogen to the fuel-air charge, its combustion time is significantly reduced, since hydrogen, having previously mixed with a portion of the air entering the cylinder and burning itself, effectively ignites the mixture in its entirety. Issues related to the accumulation of hydrogen on board the car, its storage, explosion safety, etc., significantly inhibit the development of mass production of cars using hydrogen fuel. The described technical solution allows the generation of hydrogen on board the car and without accumulation to use it as an additive to the main fuel in internal combustion engines. The technical result is to reduce the consumption of hydrocarbon fuels (of petroleum origin) and increase the environmental friendliness of the car due to the reduction of the emission of harmful substances in exhaust gases.


2020 ◽  
Author(s):  
Chiriac Rares ◽  
Anghel Chiru

Abstract Internal combustion engines have an efficiency of operating which can be exploit to increase its performance. Part of the residual gases can be recovered through the technical solutions such as turbocharging. The turbocharging solution is one of the most popular technical solutions for increasing the energy performance of internal combustion engines. For the turbocharging process it is used a turbocharger. The turbocharger can contribute also with new technical solutions to increase the energy performance of the internal combustion engines. One of the solutions proposed for the theoretical and experimental research is the hybrid turbocharger, which has a double function, namely to compress the fresh air for the internal combustion engine, and to generate electric energy for the electric engine of the vehicle both for consumption other to be stored in batteries. This article aims is to present the result of the experimental research of the hybrid turbocharger, simulate and validate the new solutions for increasing the energy performance of internal combustion engines through hybrid turbochargers using a coupled electric generator. The simulations will be made using the AMESim Sofware developed by Siemens to demonstrate the efficiency of the new solutions such as a hybrid turbocharger through calculations. The tests will be carried out with the test bed CIMAT. CIMAT test bed is a machine which provides higt pressure air which simulate the combustion gases of an engine. The pourpose of the CIMAT test bed is to rotate the hybrid turbocharger turbine and also the compressor wheel. More technical information about the hybrid turbocharger test will be presented in the article and also constructive details. Based on the technical information and input data in the first phase it will be made an application for the simulation and validation of the prototype to demonstrate the great potential of the turbocharger to produce also green energy.


2008 ◽  
Vol 132 (1) ◽  
pp. 3-16
Author(s):  
Jerzy MERKISZ ◽  
Marek WALIGÓRSKI

The article concerns the possibilities of use of the method being able to assess of the combustion process and its lack in internal combustion engines of railway traction vehicles, that bases on the use of vibration signal parameters. The paper includes the results of research conducted on the engine test bench with a single cylinder research and compression-ignition engine with direct injection, and tests for the engine of a diesel locomotive in the exploitation condition. Possibility of the vibration signal estimators application to the assessment of a combustion process lack in an internal combustion engine and a high reliability of combustion process diagnostics basing on the above method have been proved.


Author(s):  
Stephen A. Ciatti ◽  
Thomas Wallner ◽  
Henry Ng ◽  
William F. Stockhausen ◽  
Brad Boyer

Although hydrogen is considered one of the most promising future energy carriers, there are several challenges to achieving a “hydrogen economy,” including finding a practical, efficient, cost-effective end-use device. Using hydrogen as a fuel for internal combustion engines is seen as a bridging technology toward a large-scale hydrogen infrastructure. To facilitate high-efficiency, high-power-density use of hydrogen with near-zero emissions in an internal combustion engine, detailed analysis of the hydrogen combustion process is necessary. This paper presents thermodynamic results regarding engine performance and emissions behavior during investigations performed on a single-cylinder research engine fueled by pressurized gaseous hydrogen. Avoiding combustion anomalies is one of the necessary steps to further improve the hydrogen engine power output at high-load operation while, at the same time, reducing fuel consumption and emissions during part-load operation. The overall target of the investigations is an improved combustion concept especially designed for hydrogen-engine-powered vehicles. Future activities include performing optical imaging of hydrogen combustion by using an endoscope. We will also investigate supercharged external mixture formation, as well as hydrogen direct-injection operation.


Author(s):  
Michael Pamminger ◽  
Thomas Wallner ◽  
James Sevik ◽  
Riccardo Scarcelli ◽  
Carrie Hall ◽  
...  

The need to further reduce fuel consumption and decrease the output of emissions — in order to be within future emissions legislation — is still an ongoing effort for the development of internal combustion engines. Natural gas is a fossil fuel which is comprised mostly of methane and makes it very attractive for use in internal combustion engines because of its higher knock resistance and higher molar hydrogen-to-carbon ratio compared to gasoline. The current paper compares the combustion and emissions behavior of the test engine being operated on either a representative U.S. market gasoline or natural gas. Moreover, specific in-cylinder blend ratios with gasoline and natural gas were also investigated at part-load and wide open throttle conditions. The dilution tolerance for part-load operation was investigated by adding cooled exhaust gas recirculation. The engine used for these investigations was a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Gasoline was injected into the intake port; natural gas was injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Injecting natural gas directly into the cylinder reduced both ignition delay and combustion duration of the combustion process compared to the injection of gasoline into the intake port. Injecting natural gas and gasoline simultaneously resulted in a higher dilution tolerance compared to operation on one of the fuels alone. Significantly higher net indicated mean effective pressure and indicated thermal efficiency were achieved when natural gas was directly injected after intake valve closing at wide open throttle, compared to an injection while the intake valves were still open. In general it was shown that the blend ratio and the start of injection need to be varied depending on load and dilution level in order to operate the engine with the highest efficiency or highest load.


2020 ◽  
Vol 10 (2) ◽  
pp. 19-23
Author(s):  
Mihail Lucian DUMITRACHE ◽  
Nicolae BUZBUCHI

The modelling of the process in internal combustion engines has been a permanent concern of specialists in the field. The complexity of the phenomena and the strong interdependence between them make the approach particularly difficult. The application of the provisions of the Protocol required the signatory countries, from 2010, to put in place measures to reduce nitrogen oxide emissions, especially in coastal areas, the most affected being, in the first instance, port technical vessels.


2018 ◽  
Vol 44 ◽  
pp. 00141 ◽  
Author(s):  
Jacek Pielecha ◽  
Monika Andrych-Zalewska

The article discusses the use of an internal catalyst, which allows to reduce the emission of harmful compounds during internal combustion engine operation. This is a type of exhaust aftertreatment system; however, its placement inside the combustion chamber, and thus closest to the combustion process, allows reducing the pollution at the source (the catalyst was sprayed on the glow plugs). This is necessary because vehicle pollution reduction is a key aspect of reducing the negative environmental impact of transport. The presented research results are a part of a wider research scheme, on the evaluation of the internal catalyst impact in various engine operating conditions – starting from static tests (on an engine dynamometer), through dynamic dynamometer tests, and ending with vehicle road tests in real driving conditions. The use of an internal catalyst during dynamic tests results in a few percent reduction in the mass of carbon monoxide, hydrocarbons, carbon dioxide and the number of particulates in the considered measurement test. It is technically possible to introduce this kind of a technical solution in most vehicles with Diesel engines, thus resulting in improved ecological properties of internal combustion engines.


2020 ◽  
Author(s):  
Aleksandr Barinov

The article considers the problem of the negative impact of the exhaust gases of diesel internal combustion engines on the environment and human health. The types of organization of the ignition process and the process of fuel combustion in a diesel engine are considered. The reasons for the occurrence of increased particulate matter in internal combustion engines in exhaust gases are also described. The main factors affecting the delay of ignition are given. The main stages of soot formation in diesel internal combustion engines are described. The influence of temperature distribution in the jets of injected fuel and the dependence of emissions on the coefficient of excess air are considered. As a result, the main conclusions are given on ensuring the reduction of solid particles in the exhaust gases of diesel engines by optimizing the combustion process.


MTZ worldwide ◽  
2021 ◽  
Vol 82 (7-8) ◽  
pp. 42-45
Author(s):  
Bernhard Bobusch ◽  
Thomas Ebert ◽  
Anja Fink ◽  
Oliver Nett

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.


Sign in / Sign up

Export Citation Format

Share Document