scholarly journals The influence of internal catalyst on exhaust emission in dynamic conditions

2018 ◽  
Vol 44 ◽  
pp. 00141 ◽  
Author(s):  
Jacek Pielecha ◽  
Monika Andrych-Zalewska

The article discusses the use of an internal catalyst, which allows to reduce the emission of harmful compounds during internal combustion engine operation. This is a type of exhaust aftertreatment system; however, its placement inside the combustion chamber, and thus closest to the combustion process, allows reducing the pollution at the source (the catalyst was sprayed on the glow plugs). This is necessary because vehicle pollution reduction is a key aspect of reducing the negative environmental impact of transport. The presented research results are a part of a wider research scheme, on the evaluation of the internal catalyst impact in various engine operating conditions – starting from static tests (on an engine dynamometer), through dynamic dynamometer tests, and ending with vehicle road tests in real driving conditions. The use of an internal catalyst during dynamic tests results in a few percent reduction in the mass of carbon monoxide, hydrocarbons, carbon dioxide and the number of particulates in the considered measurement test. It is technically possible to introduce this kind of a technical solution in most vehicles with Diesel engines, thus resulting in improved ecological properties of internal combustion engines.

2021 ◽  
pp. 146808742110442
Author(s):  
Sebastian Welscher ◽  
Mohammad Hossein Moradi ◽  
Antonino Vacca ◽  
Peter Bloch ◽  
Michael Grill ◽  
...  

Due to increasing climate awareness and the introduction of much stricter exhaust emission legislation the internal combustion engine technology faces major challenges. Although the development and state of technology of internal combustion engines generally reached a very high level over the last years those need to be improved even more. Combining water injection with a diesel engine, therefore, seems to be the next logical step in developing a highly efficient drive train for future mobility. To investigate these potentials, a comprehensive evaluation of water injection on the diesel engine was carried out. This study covers >560 individual operating points on the test bench. The tests were carried out on a single-cylinder derived from a Euro 6d four-cylinder passenger car with the port water injection. Furthermore, a detailed pressure trace analysis (PTA) was performed to evaluate various aspects regarding combustion, emission, etc. The results show no significant effects of water injection on the combustion process, but great potential for NOx reduction. It has been shown that with the use of water injection at water-to-fuel rates of 25%, 50%, and 100%, NOx reduction without deterioration of soot levels can be achieved in 62%, 40%, and 20% of the experiments, respectively. Furthermore, water injection in combination with EGR offers additional reduction in NOx emissions.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1148 ◽  
Author(s):  
Teresa Castiglione ◽  
Pietropaolo Morrone ◽  
Luigi Falbo ◽  
Diego Perrone ◽  
Sergio Bova

Improvements in internal combustion engine efficiency can be achieved with proper thermal management. In this work, a simulation tool for the preliminary analysis of the engine cooling control is developed and a model-based controller, which enforces the coolant flow rate by means of an electrically driven pump is presented. The controller optimizes the coolant flow rate under each engine operating condition to guarantee that the engine temperatures and the coolant boiling levels are kept inside prescribed constraints, which guarantees efficient and safe engine operation. The methodology is validated at the experimental test rig. Several control strategies are analyzed during a standard homologation cycle and a comparison of the proposed methodology and the adoption of the standard belt-driven pump is provided. The results show that, according to the control strategy requirements, a fuel consumption reduction of up to about 8% with respect to the traditional cooling system can be achieved over a whole driving cycle. This proves that the proposed methodology is a useful tool for appropriately cooling the engine under the whole range of possible operating conditions.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Arthur R. Asoyan ◽  
Igor K. Danilov ◽  
Igor A. Asoyan ◽  
Georgy M. Polishchuk

A technical solution has been proposed to reduce the consumption of basic hydrocarbon fuel, to improve the technical, economic and environmental performance of internal combustion engines by affecting the combustion process of the fuel-air mixture with a minimum effective mass fraction of hydrogen additive in the fuel-air mixture. The burning rate of hydrogen-air mixtures is an order of magnitude greater than the burning rate of similar mixtures based on gasoline or diesel fuel, compared with the former, they are favorably distinguished by their greater detonation stability. With minimal additions of hydrogen to the fuel-air charge, its combustion time is significantly reduced, since hydrogen, having previously mixed with a portion of the air entering the cylinder and burning itself, effectively ignites the mixture in its entirety. Issues related to the accumulation of hydrogen on board the car, its storage, explosion safety, etc., significantly inhibit the development of mass production of cars using hydrogen fuel. The described technical solution allows the generation of hydrogen on board the car and without accumulation to use it as an additive to the main fuel in internal combustion engines. The technical result is to reduce the consumption of hydrocarbon fuels (of petroleum origin) and increase the environmental friendliness of the car due to the reduction of the emission of harmful substances in exhaust gases.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


Author(s):  
E.T. Plaksina ◽  
A.B. Syritsky ◽  
A.S. Komshin

The article considers the main methods of internal combustion engine diagnostics. A method based on measuring the time intervals between the phases of the working cycle of the mechanism is described. An algorithm for measuring the time intervals from the formulation of the problem to the proof of the efficiency of this method on an internal combustion engine has been determined. The installation of the angle sensor on the crankshaft of the experimental bench engine VAZ 21126 is shown. The basis for the construction of a mathematical model of the crankshaft is presented and the main factors influencing its movement are identified. A criterion has been established according to which the misfire is determined most accurately. The results obtained can be used for developing diagnostic systems for internal combustion engines, as well as engines operating in extreme conditions, for example, beyond the Arctic Circle, on ships, etc.


2019 ◽  
Vol 22 (1) ◽  
pp. 341-348
Author(s):  
Nir Druker ◽  
Gideon Goldwine ◽  
Eran Sher

We propose here a new method to evaluate the mixture charge density inside the combustion chamber of an internal combustion engine. This is an important parameter that is needed to optimize the spark timing and the amount of fuel that is introduced to the cylinder at each cycle, thus optimizing the engine operation for higher power, lower brake-specific fuel consumption, or lower pollutants’ emission at any altitude/ambient conditions. The evaluation of the charge density is performed at each cycle (on a cycle-to-cycle basis) by using the voltage–current characteristics of the spark plug gap. This real-time evaluation method may save two of the present in-use temperature and pressure gages, thus considerably increasing the reliability of the propulsion unit. Owing to the expected higher system reliability and system simplicity, small unmanned aerial vehicles, as well as small automotive engines of various types, may significantly benefit from this proposed method. The method principles, rationale, and some preliminary results are presented.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Sign in / Sign up

Export Citation Format

Share Document