Multiple Reprocessing of Gear Using Recycled Polypropylene

2014 ◽  
Vol 660 ◽  
pp. 204-208
Author(s):  
Nik Mizamzul Mehat ◽  
Amirul Aliff Jamaludin ◽  
Shahrul Kamaruddin

The reprocessing ability of recycled polypropylene (PP) has been investigated to evaluate the recycling feasibility in spur gear production. Up to 15 reprocessing cycles have been performed by injection moulding, and the effects on tensile properties including ultimate tensile strength, Young’s modulus and elongation at break have been studied. Results revealed that reprocessing ability of recycled PP spur gears could yield satisfactory quality as attractive as that corresponding to the virgin PP spur gear. The recycled PP gears resulted in more 10% variation in tensile properties during multiple processing. This effort might be a contribution to convince the industry to apply recycling of PP by means of multiple reprocessing in gear manufacturing.

2015 ◽  
Vol 754-755 ◽  
pp. 192-196
Author(s):  
Salmah Husseinsyah ◽  
Chan Ming Yeng ◽  
Part Wei Ken

Polymer blending is one of the methods used to improve some insufficient properties of conventional polymers. The objective of this work was to study the effectiveness of CR content on the tensile properties and morphology study of recycled polypropylene (rPP)/ chloroprene rubber (CR) blends. The results indicated that the tensile strength and modulus of elasticity of rPP/CR blends decreased, however elongation at break increased as increasing CR content. The morphology study of rPP/CR blends showed the incompatibility between rPP and CR with the detachment of CR particles and CR particles pulled out from rPP surface.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2018 ◽  
Vol 917 ◽  
pp. 52-56
Author(s):  
Jirapornchai Suksaeree

Recently, Thai herbs are widely used as medicine to treat some illnesses. Zingiber cassumunar Roxb., known by the Thai name “Plai”, is a popular anti-inflammatory, antispasmodic herbal body and muscle treatment. This research aimed to prepare herbal patches that incorporated the 3 g of crude Z. cassumunar oil. The herbal patches made from different polymer blends were 2 g of 3.5%w/v chitosan and 5 g of 20%w/v hydroxypropyl methylcellulose (HPMC), or 2 g of 3.5%w/v chitosan and 5 g of 20%w/v polyvinyl alcohol (PVA) using 2 g of glycerin as a plasticizer. They were prepared by mixing all ingredients in a beaker and produced by solvent casting method in hot air oven at 70±2oC. The completed herbal patches were evaluated for their mechanical properties including Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion. The thickness of blank and herbal patches was 0.263-0.282 mm and 0.269-0.275 mm, respectively. Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion were 104.73-142.71 MPa, 87.92-93.28 MPa, 154.39-174.98 %, 3.43-4.88 MPa, and 5.29-7.02 MPa, respectively, for blank patches, and 116.83-147.28 MPa, 89.49-100.47 MPa, 133.78-159.27 %, 2.01-3.98 MPa, and 4.03-5.19 MPa, respectively, for herbal patches. We prepared herbal blended patches made from chitosan/PVA or chitosan/HPMC polymer matrix blends incorporating the crude Z. cassumunar oil. They had good mechanical properties that might be developed for herbal medicinal application.


Author(s):  
Asma Ul Hosna Meem ◽  
Kyle Rudolph ◽  
Allyson Cox ◽  
Austin Andwan ◽  
Timothy Osborn ◽  
...  

Abstract Digital light processing (DLP) is an emerging vatphotopolymerization-based 3D-printing technology where full layers of photosensitive resin are irradiated and cured with projected ultraviolet (UV) light to create a three-dimensional part layer-by-layer. Recent breakthroughs in polymer chemistry have led to a growing number of UV-curable elastomeric photoresins developed exclusively for vat photopolymerization additive manufacturing (AM). Coupled with the practical manufacturing advantages of DLP AM (e.g., industry-leading print speeds and sub-micron-level print resolution), these novel elastomeric photoresins are compelling candidates for emerging applications requiring extreme flexibility, stretchability, conformability, and mechanically-tunable stiffness (e.g., soft robotic actuators and stretchable electronics). To advance the role of DLP AM in these novel and promising technological spaces, a fundamental understanding of the impact of DLP manufacturing process parameters on mechanical properties is requisite. This paper highlights our recent efforts to explore the process-property relationship for ELAST-BLK 10, a new commercially-available UV-curable elastomer for DLP AM. A full factorial design of experiments is used to investigate the effect of build orientation and layer thickness on the quasi-static tensile properties (i.e., small-strain elastic modulus, ultimate tensile strength, and elongation at fracture) of ELAST-BLK 10. Statistical results, based on a general linear model via ANOVA methods, indicate that specimens with a flat build orientation exhibit the highest elastic modulus, ultimate tensile strength, and elongation at fracture, likely due to a larger surface area that enhances crosslink density during the curing process. Several popular hyperelastic constitutive models (e.g., Mooney-Rivlin, Yeoh, and Gent) are calibrated to our quasi-static tensile data to facilitate component-level predictive analyses (e.g., finite-element modeling) of soft robotic actuators and other emerging soft-matter applications.


Author(s):  
Adebayo F. Owa ◽  
Isiaka O. Oladele ◽  
Adeolu Adesoji Adediran ◽  
Joseph A. Omotoyinbo

Three novel bio-polymers were synthesized by cationic polymerization of Thevetia peruviana seed oil with styrene and divinylbenzene using modified boron trifluoride etherate as initiator. The cured thermosets ranging from soft to hard, were found to contain between 74.8 to 85.5 % cross linked materials with crosslink densities ranging from 1.33 x 103 to 1.84 x 103 mol/m3. The ultimate tensile strength of the materials varied from 0.52 to 0.55 Mpa, the young moduli is between 38.4 to 53.9 Mpa, the elongation at break varied from 55 to 64 %, the density of the polymers ranged between 0.850 to 0.866 gcm-3, the impact strength is between 2.31 to 2.81 J, while hardness ranged between 3.40 to 3.90 BHN. Overall, the newly synthesized materials from Thevetia peruviana oil have many potentials as new polymeric materials.


2013 ◽  
Vol 411-414 ◽  
pp. 2993-2996
Author(s):  
Yu Pu Deng ◽  
Lin Xue Du ◽  
Xi Hong Li ◽  
Xia Liu ◽  
Hai Jiao Liu

The novel packaging was synthesised by coating polyvinyl chloride (PVC) film with Polyvinylamine/Polyvinyl alcohol (PVAm/PVA) mixture which can effectively inhibit the migration of DOP in this paper. The effect of PVAm/PVA mixture on inhibiting DOP migration was detected via extraction tests. The results showed that the novel packaging significantly reduced the migration rate of DOP compared with the control (PVC film). After 24h extracted by hexane 40% PVAm in mixture being coated on PVC had the lowest migration rate (6.20%) among the samples, while 7.60% is the migration rate of control sample. Tensile properties analysis indicated the elongation at break and tensile strength of samples coating PVAm/PVA higher than control sample. The thermogravimetric analysis demonstrated that the PVAm/PVA mixed solution can deduce thermogravimetric rate. Therefore, coating PVC with PVAm/PVA mixture is an effective approach to suppress the migration of DOP.


2017 ◽  
Vol 50 (6) ◽  
pp. 491-500 ◽  
Author(s):  
Sajjad Daneshpayeh ◽  
Amir Tarighat ◽  
Faramarz Ashenai Ghasemi ◽  
Mohammad Sadegh Bagheri

The object of this work is to study and predict the tensile properties (tensile strength, elastic modulus, and elongation at break) of ternary nanocomposites based on epoxy/glass fiber/nanosilica using the fuzzy logic (FL). Two factors in three levels including glass fiber at 0, 5, and 10 wt% and nanosilica at 0, 0.5, and 1 wt% were chosen for adding to an epoxy matrix. From FL surfaces, it was found that the glass fiber content had a main role in the tensile properties of nanocomposites. The high levels of glass fiber content led to a significant increase in the elastic modulus and generally, the presence of glass fiber decreased the tensile strength and elongation at break. Also, addition of the nanosilica content resulted in an increased elastic modulus but decreased the elongation at break of nanocomposites. Finally, an FL model was obtained for each tensile property.


2015 ◽  
Vol 754-755 ◽  
pp. 161-165
Author(s):  
Nurul Fatin Syazwani binti Arshad ◽  
Salmah Husseinsyah ◽  
Lim Bee Ying

This research focused on the utilization of kapok husk (KH) as filler in low linear density polyethylene (LLDPE). The effect of filler content on tensile properties and morphology of LLDPE/KH eco-composites were investigated. The eco-composites were prepared by using Brabender Plasticiser EC Plus at temperature 160 °C and rotor speed 50 rpm. The results indicated that the tensile strength and elongation at break decreased with KH content increased. However, the modulus of elasticity increased with increasing of KH content. The morphology study of eco-composites exhibit poor interfacial adhesion between KH and LLDPE.


Sign in / Sign up

Export Citation Format

Share Document