Identifying Real Stiffness Properties of Structural Elements of Adapted Finite-Element Models of Buildings and Structures - Part 2: Computational-Experimental Methodology

2014 ◽  
Vol 670-671 ◽  
pp. 736-741 ◽  
Author(s):  
Alexander M. Belostotskiy ◽  
Pavel I. Novikov

The distinctive paper is devoted to new defect identification methodology based on dynamic characteristics of real construction. The methodology is founded on mathematically formalized procedure of FE-model adaptation by measured and calculated eigen pairs of dynamic system. Main steps of the methodology are described. Application of the methodology together with standing wave method might allow to identify deviations of stiffness parameters of a real construction facility.

2014 ◽  
Vol 670-671 ◽  
pp. 742-746 ◽  
Author(s):  
Pavel I. Novikov ◽  
Alexander M. Belostotskiy

The distinctive paper is devoted to approbation of new defect identification methodology based on the dynamic characteristics of real construction. Mathematically formalized procedure of the methodology is implemented at the test bench. The proposed algorithm identifies a defect. The features of results obtained from the procedure are described.


2014 ◽  
Vol 670-671 ◽  
pp. 732-735 ◽  
Author(s):  
Pavel I. Novikov

The distinctive paper is devoted to problem of identification the dynamic characteristics of mathematical models based on the measured dynamic characteristics of real constructions. It is describes a problem of discrepancy of measured and modeling eigen pairs. It is shown that the problem is systemic. The creation and verification processes of mathematical (finite element) models used in the design constructions need some work and adjustments. For a reliable analysis of the construction ways are suggested to overcome the identified gaps using adaptive procedures.


2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


Author(s):  
Zahra Shahbazi ◽  
Devon Keane ◽  
Domenick Avanzi ◽  
Lance S. Evans

Finite element analysis (FEA) has been one of the successful tools in studying mechanical behavior of biological materials. There are many instances where creating FE models requires extensive time and effort. Such instances include finite element analysis of tree branches with complex geometries and varying mechanical properties. Once a FE model of a tree branch is created, the model is not applicable to another branch, and all the modeling steps must be repeated for each new branch with a different geometry and, in some cases, material. In this paper, we describe a new and novel program “Immediate-TREE” and its associated guided user interface (GUI). This program provides researchers a fast and efficient tool to create finite element analysis of a large variety of tree branches. Immediate-TREE automates the process of creating finite element models with the use of computer-generated Python files. Immediate-TREE uses tree branch data (geometry, mechanical, and material properties) and generates Python files. Files were then run in finite element analysis software (abaqus) to complete the analysis. Immediate-TREE is approximately 240 times faster than creating the same model directly in the FEA software (abaqus). This new process can be used with a large variety of biological applications including analyses of bones, teeth, as well as known biological materials.


Author(s):  
J. Jayapriya ◽  
D Muruganandam ◽  
B. Senthil Kumar

Carbon Nano Tubes (CNTs) have a nanostructure with length-to-diameter ratio greater than 1,000,000 exhibiting unusually high toughness and elastic-moduli. Young’s modulus of a single-walled CNT is estimated through Molecular Structural Mechanics Approach is being simulated as a frame-like-structure where primary bonds between successive atoms forms a beam. Properties for FE model are calculated from energy equivalence between molecular and structural mechanics. By validation, computed results match well with the literature. Finite element models such as armchair and zig-zag are established and Young’s-moduli are effectively predicted.


Author(s):  
Raymond E. Martin ◽  
David M. O’Brien

Abstract Finite element models used in the dynamic analysis of structures benefit from correlation with experimental data at each step in the analytical development. The steps Aircraft Landing Systems has followed in obtaining both modal and operational data for the validation of aircraft wheel, brake, and strut FEA models are discussed in this paper. These steps include the creation of a valid experimental modal model for major components in the structure, correlation of the modal results to tie FE model results, testing of sub-assemblies, and collecting data from dynamometer tests of the system and their correlation to the assembled FE model of the system. Various procedures are described which have been developed and adapted by Aircraft Landing Systems and which enable practical correlation to frequencies as high as 2000 Hz. The application of the procedures are demonstrated with examples from recent testing.


2014 ◽  
Vol 17 (11) ◽  
pp. 1601-1621 ◽  
Author(s):  
Nima Khorsandnia ◽  
Hamid Valipour ◽  
Keith Crews

This paper presents the structural response of timber-concrete composite (TCC) beams predicted by finite element models (i.e. continuum-based and 1D frame) and manual calculations. Details of constitutive laws adopted for modelling timber and concrete are provided and application of the Hashin damage model in conjunction with continuum-based FE for capturing failure of timber under bi-axial stress state is discussed. A simplified strategy for modelling the TCC connection is proposed in which the connection is modelled by a nonlinear spring and the full load-slip behaviour of each TCC connection is expressed with a formula that can be directly implemented in the general purpose FE codes and used for nonlinear analysis of TCC beams. The developed FE models are verified by examples taken from the literature. Furthermore, the load-displacement response and ultimate loading capacity of the TCC beams are determined according to Eurocode 5 method and compared with FE model predictions.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kyu-Sik Park ◽  
Taek-Ryong Seong ◽  
Myung-Hyun Noh

Hanger cables in suspension bridges are partly constrained by horizontal clamps. So, existing tension estimation methods based on a single cable model are prone to higher errors as the cable gets shorter, making it more sensitive to flexural rigidity. Therefore, inverse analysis and system identification methods based on finite element models are suggested recently. In this paper, the applicability of system identification methods is investigated using the hanger cables of Gwang-An bridge. The test results show that the inverse analysis and systemic identification methods based on finite element models are more reliable than the existing string theory and linear regression method for calculating the tension in terms of natural frequency errors. However, the estimation error of tension can be varied according to the accuracy of finite element model in model based methods. In particular, the boundary conditions affect the results more profoundly when the cable gets shorter. Therefore, it is important to identify the boundary conditions through experiment if it is possible. The FE model-based tension estimation method using system identification method can take various boundary conditions into account. Also, since it is not sensitive to the number of natural frequency inputs, the availability of this system is high.


2012 ◽  
Vol 19 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
A. Devin ◽  
P.J. Fanning

Structures include elements designated as load bearing and non-load bearing. While non-load bearing elements, such as facades and internal partitions, are acknowledged to add mass to the system, the structural stiffness and strength is generally attributed to load bearing elements only. This paper investigates the contribution of non-load bearing elements to the dynamic response of a new structure, the Charles Institute, in the grounds of University College Dublin (UCD) Ireland. The vertical vibration response of the first floor and the lateral response at each floor level were recorded at different construction stages. The evolution of the structural response as well as the generation of a finite element (FE) model is discussed. It was found that the addition of the non-load bearing facades increased the first floor natural frequency from 10.7 Hz to 11.4?Hz, a change of approximately +6.5%. Similarly these external facades resulted in the first sway mode having its frequency increased by 6%. The subsequent addition of internal partitions, mechanical services and furnishings resulted in the floor natural frequency reducing to 9.2 Hz. It is concluded that external facades have the net effect of adding stiffness and the effect of internal partitions and furnishings is to add mass. In the context of finite element modelling of structures there is a significant challenge to represent these non-structural elements correctly so as to enable the generation of truly predictive FE models.


2003 ◽  
Vol 125 (3) ◽  
pp. 305-308 ◽  
Author(s):  
R. R. de Swardt

A comparative study to map the residual strain/stress states through the walls of autofrettaged thick-walled high-strength steel cylinders has been conducted with neutron diffraction, Sachs boring, and the compliance methods. Test samples with different wall thickness ratios were prepared to have significant amounts of reverse yielding due to the Bauschinger effect. In an effort to explain observed differences in the hoop stress results, the crack compliance experiment was simulated with finite elements. Several residual stress fields were introduced in the finite element models. A theoretical finite element (FE) model, which is capable of accurately modeling the highly nonlinear reverse yielding of the material, was able to accurately predict the crack compliance strain measurements.


Sign in / Sign up

Export Citation Format

Share Document