A Directional Forward Routing Protocol Based on Spray and Wait in Vehicular Ad Hoc Networks

2014 ◽  
Vol 687-691 ◽  
pp. 2442-2446
Author(s):  
Jie Han ◽  
Lun Tang ◽  
Xiao Qin Gu

In recent years, Vehicular Ad Hoc Network (VANET) attracts more and more attention. VANET is a special Mobile Ad Hoc Network, the network suffers from high mobility so that the end-to-end path may not exist all the time. First, this paper proposed the improvement of spray phase, combined with the real situation of VANET. Second, we choose the best performance of neighbor node as next hop in forward phase. Third, it has an available buffer management mechanism to increase packet delivery ratio and reduce the overhead. The Simulation results show that DFSB routing can significantly enhance packet delivery ratio and decrease routing delay.

Now a day’s mobile ad-hoc network (MANET) is engaged by numerous scientists and endeavoring to be conveyed by and by. To accomplish this objective, these two components are a significant issue that we need to consider. The first is "overhead". As it were, messages that is not important to be sent when setting up a system association between versatile hubs. The following issue is the parcel sending rate from source to the goal hub that sufficiently high to ensure a successful system association. This paper is concentrating on improving the exhibition of the Location-Aided Routing Protocol (LAR) regarding overhead decrease by adjusting the calculation of the MANET course disclosure process. The consequence of the reproduction shows that the proposed convention can decrease overhead definitely, growing system lifetime and increment parcel sending rate while contrasting and other traditional conventions.


Author(s):  
Shamsul J Elias ◽  
M. Elshaikh ◽  
M. Yusof Darus ◽  
Jamaluddin Jasmis ◽  
Angela Amphawan

<p>Vehicular Ad hoc Networks (VANET) play a vital Vehicle to Infrastructure (V2I) correspondence frameworks where vehicle are convey by communicating and conveying data transmitted among each other. Because of both high versatility and high unique network topology, congestion control should be executed distributedly. Optimizing the congestion control in term of delay rate, packet delivery ratio (PDR) and throughput could limit the activity of data packet transmissions. These have not been examined altogether so far – but rather this characteristic will be fundamental for VANET system execution and network system performance. This paper exhibits a novel strategy for congestion control and data transmission through Service Control Channel (SCH) in VANET. The Taguchi strategy has been connected in getting the optimize value of parameter for congstion control in highway environment. This idea lessens the pointless activity of data transmission and decreases the likelihood of congested in traffic in view of execution for measuring the delay rate, packet delivery ratio (PDR) and throughput. The proposed execution performance is estimated with the typical VANET environment in V2I topology in highway driving conditions and the simulation results demonstrate and enhance network execution performance with effective data transmission capacity.</p>


2015 ◽  
Vol 738-739 ◽  
pp. 1115-1118
Author(s):  
Li Cui Zhang ◽  
Xiao Nan Zhu ◽  
Zhi Gang Wang ◽  
Guang Hui Han

Considering the shortcoming of the traditional Greedy Perimeter Stateless Routing Protocol in the Vehicular Ad hoc Networks ,this paper focuses on an improved GPSR protocol based on the density of vehicle flow .This new scheme includes macro-directing algorithm , micro-forwarding strategy and the maintenance of the neighbor list.The simulation result shows that compared with the traditional GPSR protocol, the new GPSR protocol improves data packet delivery ratio, but its average end-to-end delay is slightly larger than before.


2020 ◽  
Vol 29 (11) ◽  
pp. 2050180
Author(s):  
S. David ◽  
P. T. Vanathi

Vehicular Ad-hoc NETworks (VANETs) are typically termed as a wireless ad-hoc network that contains extreme node mobility and also the network carries a great significance in various traffic-oriented commercial applications and safety services. Due to its high mobility, routing in VANET has been a challenging work and also proving a higher rate of packet delivery ratio with reduced packet loss has been more important to be considered in route formations. With that note, this paper contributes to developing a clustering model called Middle-Order Vehicle-based Clustering (MOVC) model for managing the frequent topological change and high vehicle mobility, and efficiently handling the typical road traffic scenario. Moreover, the algorithm is intended to maintain the cluster to be constant for managing the vehicles in effective ways and also to provide uninterrupted communication between the vehicles. An algorithm for Effective Cluster Head Election (ECHE) is also derived in this paper for proficiently handling the frequency variation on the highways. Further, the model is simulated and evaluated on the basis of various metrics of VANET routing, specifically packet loss, packet delivery ratio, network lifetime and throughput. The results show that the proposed mechanism outperforms the results of existing models.


2015 ◽  
Vol 14 (01) ◽  
pp. 27-34
Author(s):  
Aletheia Anggelia Tonoro ◽  
Hartanto K. Wardana ◽  
Saptadi Nugroho

Meningkatnya, tingkat kecelakaan dan kemacetan di jalan raya, dan berkembangnya teknologi informasi dengan menggunakan wireless, menghadirkan teknologi Wireless Access for Vehicular Environment (WAVE) sebagai standart komunikasi kendaraan. Salah satu, perkembangan WAVE adalah Vehicular ad hoc networks (VANET). Teknologi VANET memungkinkan sebuah perangkat komunikasi dapat berkomunikasi secara langsung dengan perangkat lain dalam posisi bergerak misalnya mobil. Meskipun VANET dapat membantu menyelesaikan permasalahan lalu lintas seperti kecelakaan, dan kemacetan, tapi untuk membangun infrastruktur jaringan VANET tidaklah mudah dan membutuhkan biaya yang cukup besar. Untuk itu, muncullah network simulator seperti VEINS, SUMO dan OMNET++ yang dapat membantu mensimulasikan jaringan VANET tanpa harus mengeluarkan biaya untuk membangun infrastrukturnya. Karena itu, pada akan dilakukan simulasi jaringan VANET menggunakan VEINS, SUMO dan OMNET++. Dalam pengujian unjuk kerja VANET digunakan 3 jenis routing yaitu Optimized Link State (OLSR), Ad hoc on Demand Distance Vector Routing (AODV) dan Dynamic Manet on Demand (DYMO) dengan delay, throughput dan packet delivery ratio sebagai parameter pengujian.


Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


Author(s):  
C. Kumuthini ◽  
A. Nirmala ◽  
K. Gomathy

Wireless access networks based on IEEE 802.11 and IEEE 802.16 have become very popular in providing different data services. In this paper our first goal is to design and implement an integrated Wimax and Wi-Fi network and compare two of the most promising infrastructure-based wireless technologies such as IEEE 802.16e standard and upcoming IEEE 802.11p standard. We investigate, through simulation, the potential and limitations of both technologies as a communication media for vehicle-to-infrastructure (V2I) communications. The performance of the two systems is evaluated for delay, packet delivery ratio, and throughput. This research work is to integrated of WiFi with WiMAX technology in an Vehicular Ad-hoc and evaluate the performance using the NS2.31 simulator. To improve the packet delivery ratio, and End-to-End delay the proposed system is implemented using Wi-Fi with WiMAX (IEEE 802.16) routing technique. we conclude that, the comparsion results shows integration of WiFi with WiMAX will produce better result when compared the existing schemes.


Sign in / Sign up

Export Citation Format

Share Document