Study on Control of Hydraulic Disc Brake System Based on PWM High Speed On/Off Valve

2011 ◽  
Vol 69 ◽  
pp. 28-32 ◽  
Author(s):  
Yu Wang ◽  
Li Lin

With the development of oil exploration and electronics technology, the automation control technologies of hydraulic disc brake system (HDBS) have become more and more widely used. After analysis the braking performance of HDBS, The optimizing schemes for hydraulic disc brake, such as PWM high speed on/off valve and pressure switch are used in the constant weight auto-drilling system. It has been tested successfully both on the integrated braking facility in lab and in the oil field. And it proved that the PWM valve have great prospects on the braking system.

2019 ◽  
Vol 272 ◽  
pp. 01024 ◽  
Author(s):  
Feng YU ◽  
Jun XIE

Eight degrees of freedom vehicle model was established. Using the method of fuzzy control, the ABS control algorithm was designed based on slip ratio. Simulation analysis was done at speed of 15m/s, 20m/s, 25m/s under turning braking. The results show that the vehicle braking performance and vehicle stability at middle or low speed was improved by using the ABS controller, but qualitative analysis shows that phenomenon of vehicle instability was appeared at high-speed conditions. The turning braking stability under ABS controller was judged quantificationally by the stability judging formula. The results show that the requirements of stability control could not meet with only Anti-lock Braking System.


Author(s):  
Aamir K. Khan ◽  
Corina Sandu

The primary goal of this work is to implement a clutch and brake system on the single tire Terramechanics rig of Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. This test rig was designed and built to study the performance of tires in off-road conditions on surfaces such as soil, sand, and ice. Understanding the braking performance of tires is crucial, especially for terrains like ice, which has a low coefficient of friction. Also, rolling resistance is one of the important aspects affecting the tractive performance of a vehicle and its fuel consumption. Investigating these experimentally will help improve tire models performance. The current configuration of the test rig does not have braking and free rolling capabilities. This study involves modifications on the rig to enable free rolling testing when the clutch is disengaged and to allow braking when the clutch is engaged and the brake applied. The first part of this work involves the design and fabrication of a clutch system that would not require major changes in the setup of the test rig; this includes selecting the appropriate clutch that would meet the torque requirement, the size that would fit in the space available, and the capability to be remotely operated. The test rig’s carriage has to be modified in order to fit a pneumatic clutch, its adapter, a new transmission shaft, and the mounting frame for the clutch system. The components of the actuation system consisting of pneumatic lines, the pressure regulator, valves, etc., have to be installed. Easy operation of the clutch from a remote location is enabled through the installation of a solenoid valve. The second part of this work is to design, fabricate, and install a braking system. The main task is to design a customized braking system that satisfies the various physical and functions constraints of the current configuration of the Terramechanics rig. Some other tasks are: design and fabrication of a customized rotor, selection of a suitable caliper, and design and fabrication of a customized mounting bracket for the caliper. A hydraulic actuation system is selected, since it is suitable for this configuration and enables remote operation of the brake. Finally, the rig is calibrated for the new testing configurations.


2021 ◽  
Vol 80 (6) ◽  
pp. 343-350
Author(s):  
V. A. Nikonov ◽  
V. F. Zubkov ◽  
M. N. Tsibizov ◽  
I. V. Nazarov ◽  
D. V. Gorskiy

The article discusses technical solutions for the creation of an effective design of a brake system for high-speed longwheelbase platforms intended for the transport of containers, as well as for the development of a fundamentally new brake equipment for the pneumatic, electro-pneumatic and mechanical parts of the brake system. Modular braking equipment for the pneumatic and electro-pneumatic parts of the high-speed platform braking system, compactly located under the platform frame, provides technical compatibility when controlling platform brakes as part of not only a high-speed freight train of permanent formation, but also in trains for other purposes, regardless of the location of the platform in the composition of the train. The performance of the braking equipment of each platform in motion and in the parking lot is monitored using pressure sensors and an electronic unit that processes the readings of the sensors and transmits information to the locomotive via one of the wire lines of the electro-pneumatic brake. The brake rigging used on the high-speed platform is arranged in the design of three-axle bogies and provides doublesided pressing on the wheels with typical composite brake pads, automatic regulation and maintenance of the standard clearances between brake pads and wheels. The proposed promising technical solutions make it possible to continuously diagnose the parameters of the brakes of each platform as part of a permanent train, display them on the locomotive monitor and transmit them to the dispatch centers of the Russian Railways infrastructure. Thanks to this, the braking effciency can be increased and the safety of train traffc can be ensured while increasing the permissible travel speeds. In the modern concept of digitalization of the infrastructure of Russian Railways, which provides for the creation in 2021–2025 (and in the future until 2030) of cars in which intelligent technologies should be applied, the braking system of a high-speed platform can be considered as the basis for creating a digitally controlled train — one of the key elements of the digital railway.


2012 ◽  
Vol 152-154 ◽  
pp. 723-726 ◽  
Author(s):  
Hyun Jung Do ◽  
Pil Jung Sung ◽  
Sun Chung Won

Hot judder characteristics of a ventilated disc brake system are discussed. Three dimensional finite element models of the ventilated disc, pads and pistons are created, and a fully coupled thermo-mechanical analysis of the hot judder phenomenon of the disc brake system is performed using SAMCEF. The brake dynamo test is carried out according to the high speed judder test mode. The evolution of the temperature distribution on the disc surface is described, and the hot spot generation process is investigated. The simulation results such as the maximum disc temperature, BTV are compared to the data from the dynamo test, and the reliabilities of the analysis technique and simulation model presented in this paper are verified.


2017 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Muhammad Mushlih Elhafid ◽  
Didik Djoko Susilo ◽  
Purwadi Joko Widodo

This study aims to determine the effect of brake pads material to the vibration response of disc brake system on many variety of braking conditions. The variations of brake pads material on this research such as metallic, non-asbes and ceramic. The variations of braking operation such as speed of disc rotation and braking pressure. Each brake pads material tested by variation of disc rotation 425, 637, 850, 1062 rpm and pressure variation 0,5 bar, 1 bar, 1,5 bar. Furthermore, the dynamic characteristics of brake pad had been tested by using the method of Modal Analysis Experiment. The results showed that the type of brake pad materials, disc rotation and braking pressure affect to vibration response of disc brake system. Increasing speed of disc rotation and braking pressure will increase the excitation force causing value amplitude of vibration in the braking system increases. Usage of brake pad ceramic also showed the lowest amplitude of vibration for all variations of disc rotation and braking pressure. Because the ceramic brake pad have the lowest natural frequency, then the value of the damping ratio is high, so that decreasing amplitude of vibration that occurs in the braking system.


Author(s):  
Hamid Alturbeh ◽  
Julian Stow ◽  
Gareth Tucker ◽  
Alan Lawton

This paper describes the current version of the Low Adhesion Braking Dynamic Optimisation for Rolling Stock (LABRADOR) simulation tool that can predict the train brake system performance and support decision-making in the design and optimisation of the braking system including wheel slide protection, sanders and the blending and control of friction and dynamic brakes in low adhesion conditions. The model has been developed in MATLAB/Simulink and is intended to mimic the braking performance of both older and newer generations of multiple unit passenger trains. LABRADOR models have been initially validated by comparing simulation results for a single car train (Class 153) and two-car train (Class 158) in dry conditions with experimental tests, for tare and crush laden vehicles. This project is supported by RSSB and a technical steering group composed of railway braking experts, suppliers and train operators and manufacturers.


2014 ◽  
Vol 543-547 ◽  
pp. 1405-1408 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Li Peng Ren

A design of regenerative braking system (RBS) for a pure electric bus was presented in this paper. A design of regenerative braking system for a pure electric bus was presented in this paper The control of regenerative braking was achieved by Pneumatic ABS and improve braking energy recovery under the premise of ensure braking performance. Regenerative braking control algorithm was mainly composed of two parts for the identification of the drivers intention and the brake force distribution. The regenerative brake control model was built in the matlab/simulink environment, rapid prototyping control was achieved by Autobox and vehicle test was carried on. Result shows that the control strategies can effectively make the pneumatic brake system and motor brake system work harmoniously.


Braking system is used for restraining the motion by absorbing energy from a moving body. The conventional braking system works on the principle of friction. Among the different types of brakes, disc brake is one of the most widely used braking systems. Estimation of efficiency of this class of brakes without manufacturing of prototype is very difficult. This paper focusses on analysis and optimization of disc brake using ANSYS software. The base modelling of the disc brake system will be carried out using SOLIDWORKS and the model will be imported to ANSYS. The analysis is aiming at optimizing the deformation and stress conditions. The final design is aiming at controlling the deformation and stresses of the disc by providing the best material to be used for the certain design. The basic brake system used for the analysis was Bajaj Pulsar 150 motor cycles.


2021 ◽  
Author(s):  
Jiabao Yin ◽  
Yuanke Wu ◽  
Chun Lu ◽  
Wei Chen ◽  
Jiliang Mo ◽  
...  

Abstract The influence of friction blocks connection configuration on the interfacial tribology behavior and FIVN (friction-induced vibration and noise) of high-speed railway braking system is systematically investigated with a scaled brake test bench. The potential relationship among interface contact status, friction, wear, pressure distribution, heat distribution and vibration noise of the system is studied under dragging test condition. The results indicate that the connection configuration of the friction blocks has a significant impact on systematic interfacial tribology behavior, heat distribution and vibration noise. A floating connection mode can suppress the vibration noise of brake system. The interfacial heat distribution and systematic vibration noise are quite relevant with the contact status, interfacial wear and pressure distribution. The increase of interfacial wear will lead to an expansion of pressure concentration area and an aggravation of vibration noise. The result of this research is helpful for a further design optimization and noise reduction of railway brake system.


Sign in / Sign up

Export Citation Format

Share Document