Optimization of Biodiesel Production from Transesterification of Waste Cooking Oils Using Alkaline Catalysts

2014 ◽  
Vol 695 ◽  
pp. 289-292
Author(s):  
M.M. Zamberi ◽  
Farid Nasir Ani ◽  
S.N.H. Hassan

The transesterification of waste vegetable oil (WVO) with methanol in the presence of potassium hydroxide (KOH) is studied in order to produce biodiesel. All the results were evaluated using central composite design by applying a double 5 level 3 factor full factorial designs. Twenty experiments were replicated under the typical range of parameter conditions coded as x1 for oil molar ratio, x2 as catalyst concentration and x3 for reaction time. The experimental fatty acid methyl ester (FAME) are compared with the predicted FAME using RSM. The optimal predicted FAME production was obtained at 92.60%. It is specified under conditions of molar ratio 4:1 mol/mol, 0.5033 wt% catalyst concentration and reaction time of 60 minutes.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2020 ◽  
Vol 2 (1) ◽  
pp. 92-97
Author(s):  
Jamilu Usman ◽  
Bashar Abdullahi Hadi ◽  
Buhari Idris ◽  
Umar Musa Tanko ◽  
Bashar Usman ◽  
...  

Biodiesel is an alternative diesel fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Biodiesel is a promising alternative fuel derived from animal fats or vegetable oil through transesterification with methanol. Base catalyzed transesterification is the most commonly used technique as it is the most economical process. Presently, a lot of heterogeneous catalysts have been formulated that are more effective than the homogeneous catalysts. CaO/Al2O3 was synthesized using incipient wetness impregnation method. The biodiesel was developed and optimized using Box-behnken response surface methodology (RSM) design provided using MINITAP-17 statistical software. The four independent variables considered are: reaction time, methanol to oil ratio, reaction temperature and catalyst concentration. The response chosen was fatty acid methyl ester (FAME) yields which were obtained from the reaction. The result from analysis of variance (ANOVA) showed a satisfactory result. Moreover, the input variables showed greater significance on the response which are reaction time and temperature base on F and P-value. The statistical models developed for predicting biodiesel yield revealed a significant agreement between the experimental and predicted values (R = 0.9686). An optimum methyl ester yield of 93.29 % was achieved with optimal conditions of methanol/oil molar ratio of 6:1, temperature of 600C, reaction time of 120 min and catalyst concentration of 1.0 wt%. The properties of the biodiesel produced also falls within the range prescribed by ASTM standard


2021 ◽  
Vol 37 (6) ◽  
pp. 1344-1349
Author(s):  
Aboulbaba Eladeb ◽  
Abdelkarim Aydi ◽  
Ibrahim Alenezi

The transesterification of waste cooking oils (WCO) with ethanol was investigated by means of potassium hydroxide (KOH) as catalyst. This work aimed to study the influences of catalyst concentration, temperature, ethanol to WCO molar ratio, reaction time, and stirring rate on the biodiesel conversion. Gas chromatography (GC) was used during the process of transesterification to determine the evolution of ethyl esters concentration with time. Biodiesel with maximum yield was obtained (92.5%) when 2 wt% KOH, temperature of 75°C, and ethanol/oil molar ratio of 11:1 were utilized.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. F. Elkady ◽  
Ahmed Zaatout ◽  
Ola Balbaa

The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF) as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS) and the infrared spectroscopy (FT-IR). Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Tanat Chokpanyarat ◽  
Vittaya Punsuvon ◽  
Supakit Achiwawanich

The novel three-dimensionally ordered macroporous (3DOM) CaO/SiO2, 3DOM CaO/Al2O3, and 3DOM Ca12Al14O32Cl2 catalysts for biodiesel transesterification were prepared by sol-gel method. The 3DOM catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The hierarchical porous structure was achieved; however, only 3DOM CaO/Al2O3 and 3DOM Ca12Al14O32Cl2 catalysts were used for transesterification due to high amount of active CaO. Various parameters such as methanol to oil molar ratio, catalyst concentration, reaction time, and their influence on the biodiesel production were studied. The result showed that 99.0% RPO conversion was achieved using the 3DOM Ca12Al14O33Cl2 as a catalyst under the optimal condition of 12 : 1 methanol to oil molar ratio and 6 wt.% catalyst with reaction time of 3 hours at 65°C.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 230 ◽  
Author(s):  
Veronica Winoto ◽  
Nuttawan Yoswathana

The molar ratio of methanol to rubber seed oil (RSO), catalyst loading, and the reaction time of RSO biodiesel production were optimized in this work. The response surface methodology, using the Box–Behnken design, was analyzed to determine the optimum fatty acid methyl ester (FAME) yield. The performance of various nanomagnetic CaO-based catalysts—KF/CaO-Fe3O4, KF/CaO-Fe3O4-Li (Li additives), and KF/CaO-Fe3O4-Al (Al additives)—were compared. Rubber seed biodiesel was produced via the transesterification process under subcritical methanol conditions with nanomagnetic catalysts. The experimental results indicated that the KF/CaO-Fe3O4-Al nanomagnetic catalyst produced the highest FAME yield of 86.79%. The optimum conditions were a 28:1 molar ratio of methanol to RSO, 1.5 wt % catalyst, and 49 min reaction time. Al additives of KF/CaO-Fe3O4 nanomagnetic catalyst enhanced FAME yield without Al up to 18.17% and shortened the reaction time by up to 11 min.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4306
Author(s):  
S. Ozkan ◽  
J. F. Puna ◽  
J. F. Gomes ◽  
T. Cabrita ◽  
J. V. Palmeira ◽  
...  

In this experimental work, calcium from natural seafood wastes was used as a heterogeneous catalyst separately or in a blend of “shell mix” for producing biodiesel. Several chemical reaction runs were conducted at varied reaction times ranging from 30 min to 8 h, at 60 °C, with a mass content of 5% (Wcat./Woil) and a methanol/oil molar ratio of 12. After the purification process, the biodiesel with fatty acid methyl ester (FAME) weight content measured was higher than 99%, which indicated that it was a pure biodiesel. This work also showed that the inorganic solid waste shell mixture used as the heterogeneous catalyst can be reused three times and the reused mixture still resulted in a FAME content higher than 99%. After 40 different transesterification reactions were performed using liquid (waste cooking oils) and solid (calcium seafood shells) wastes for producing biodiesel, under the specific conditions stated above, we found a successful, innovative, and promising way to produce biodiesel. In addition, blends prepared with jet fuel A1 and biodiesel were recorded with no invalid results after certain tests, at 25 °C. In this case, except for the 10% blend, the added biodiesel had no significant effect on the viscosity (fluidity) of the biojet fuel.


2020 ◽  
Vol 997 ◽  
pp. 93-101
Author(s):  
Mohd Nurfirdaus Mohiddin ◽  
A.A. Saleh ◽  
Amarnadh N.R. Reddy ◽  
Sinin Hamdan

Heterogeneous catalyst has been viewed as a promising catalyst for biodiesel production. This study employed Turritella terebra (TT) shell as a source for synthesizing heterogeneous CaO catalyst for biodiesel production via transesterification by utilizing chicken fat as a feedstock. The TT shell CaO catalyst was characterized and its catalytic performance was studied. The spectrographic methods that include FTIR, SEM, PSA, and BET-BJH were employed for characterization of the synthesized CaO. The TT shell CaO catalyst optimally produced chicken fat biodiesel (CFB) with reaction parameters at catalyst concentration of 4 wt%, chicken fat to methanol molar ratio of 1:12, reaction temperature of 60°C, and reaction time of 90 min. The optimal yield was 94.03% and the TT shell CaO catalyst still yield 79.19% of CFB on the fifth cycle of reaction. This study has implied that TT shell is a feasible and attractive renewable source of heterogeneous CaO catalyst for biodiesel production.


2014 ◽  
Vol 3 (6) ◽  
Author(s):  
Alex Mazubert ◽  
Joelle Aubin ◽  
Sébastien Elgue ◽  
Martine Poux

AbstractThe transformation of waste cooking oils for fatty acid methyl ester production is investigated in two intensified technologies: microstructured Corning


Sign in / Sign up

Export Citation Format

Share Document