PB-SVM Ensemble: A SVM Ensemble Algorithm Based on SVM

2014 ◽  
Vol 701-702 ◽  
pp. 58-62
Author(s):  
Bo Wang ◽  
Yu Kai Yao ◽  
Xiao Ping Wang ◽  
Xiao Yun Chen

As one of the most popular and effective classification algorithms, Support Vector Machine (SVM) has attracted much attention in recent years. Classifiers ensemble is a research direction in machine learning and statistics, it often gives a higher classification accuracy than the single classifier. This paper proposes a new ensemble algorithm based on SVM. The proposed classification algorithm PB-SVM Ensemble consists of some SVM classifiers produced by PCAenSVM and fifty classifiers trained using Bagging, the results are combined to make the final decision on testing set using majority voting. The performance of PB-SVM Ensemble are evaluated on six datasets which are from UCI repository, Statlog or the famous research. The results of the experiment are compared with LibSVM, PCAenSVM and Bagging. PB-SVM Ensemble outperform other three algorithms in classification accuracy, and at the same time keep a higher confidence of accuracy than Bagging.

2021 ◽  
Vol 8 (2) ◽  
pp. 311
Author(s):  
Mohammad Farid Naufal

<p class="Abstrak">Cuaca merupakan faktor penting yang dipertimbangkan untuk berbagai pengambilan keputusan. Klasifikasi cuaca manual oleh manusia membutuhkan waktu yang lama dan inkonsistensi. <em>Computer vision</em> adalah cabang ilmu yang digunakan komputer untuk mengenali atau melakukan klasifikasi citra. Hal ini dapat membantu pengembangan <em>self autonomous machine</em> agar tidak bergantung pada koneksi internet dan dapat melakukan kalkulasi sendiri secara <em>real time</em>. Terdapat beberapa algoritma klasifikasi citra populer yaitu K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional Neural Network (CNN). KNN dan SVM merupakan algoritma klasifikasi dari <em>Machine Learning</em> sedangkan CNN merupakan algoritma klasifikasi dari Deep Neural Network. Penelitian ini bertujuan untuk membandingkan performa dari tiga algoritma tersebut sehingga diketahui berapa gap performa diantara ketiganya. Arsitektur uji coba yang dilakukan adalah menggunakan 5 cross validation. Beberapa parameter digunakan untuk mengkonfigurasikan algoritma KNN, SVM, dan CNN. Dari hasil uji coba yang dilakukan CNN memiliki performa terbaik dengan akurasi 0.942, precision 0.943, recall 0.942, dan F1 Score 0.942.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Weather is an important factor that is considered for various decision making. Manual weather classification by humans is time consuming and inconsistent. Computer vision is a branch of science that computers use to recognize or classify images. This can help develop self-autonomous machines so that they are not dependent on an internet connection and can perform their own calculations in real time. There are several popular image classification algorithms, namely K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). KNN and SVM are Machine Learning classification algorithms, while CNN is a Deep Neural Networks classification algorithm. This study aims to compare the performance of that three algorithms so that the performance gap between the three is known. The test architecture is using 5 cross validation. Several parameters are used to configure the KNN, SVM, and CNN algorithms. From the test results conducted by CNN, it has the best performance with 0.942 accuracy, 0.943 precision, 0.942 recall, and F1 Score 0.942.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


2020 ◽  
Vol 13 (5) ◽  
pp. 901-908
Author(s):  
Somil Jain ◽  
Puneet Kumar

Background:: Breast cancer is one of the diseases which cause number of deaths ever year across the globe, early detection and diagnosis of such type of disease is a challenging task in order to reduce the number of deaths. Now a days various techniques of machine learning and data mining are used for medical diagnosis which has proven there metal by which prediction can be done for the chronic diseases like cancer which can save the life’s of the patients suffering from such type of disease. The major concern of this study is to find the prediction accuracy of the classification algorithms like Support Vector Machine, J48, Naïve Bayes and Random Forest and to suggest the best algorithm. Objective:: The objective of this study is to assess the prediction accuracy of the classification algorithms in terms of efficiency and effectiveness. Methods: This paper provides a detailed analysis of the classification algorithms like Support Vector Machine, J48, Naïve Bayes and Random Forest in terms of their prediction accuracy by applying 10 fold cross validation technique on the Wisconsin Diagnostic Breast Cancer dataset using WEKA open source tool. Results:: The result of this study states that Support Vector Machine has achieved the highest prediction accuracy of 97.89 % with low error rate of 0.14%. Conclusion:: This paper provides a clear view over the performance of the classification algorithms in terms of their predicting ability which provides a helping hand to the medical practitioners to diagnose the chronic disease like breast cancer effectively.


Author(s):  
Seyma Kiziltas Koc ◽  
Mustafa Yeniad

Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.


2021 ◽  
Vol 5 (1) ◽  
pp. 66-70
Author(s):  
Ardalan Husin Awlla ◽  
Brzu T. Muhammed ◽  
Sherko H. Murad ◽  
Sabah N. Ahmad

This research analyzed different aspects of coronavirus disease (COVID-19) for patients who have coronavirus, for find out which aspects have an effect to patient death. First, a literature has been made with the previous research that has been done on the analysis dataset of coronavirus using Machine learning (ML) algorithm. Second, data analytics is applied on a dataset of Sulaymaniyah, Iraq, to find factors that affect the mortality rate of coronavirus patients. Third, classification algorithms are used on a dataset of 1365 samples provided by hospitals in Sulaymaniyah, Iraq to diagnose COVID-19. Using ML algorithm provided us to find mortality rate of this disease, and detect which factor has major effect to patient death. It is shown here that support vector machine (SVM), decision tree (DT), and naive Bayes algorithms can classify COVID-19 patients, and DT is best one among them at an accuracy (96.7 %).


Diabetes Mellitus is considered one of the chronic diseases of humankind which causes an increase in blood sugar. Many complications are reported if DM remains untreated and unidentified. Identification of this disease requires a lot of physical and mental trauma and effort which involves visiting a doctor, blood and urine test at the diagnostic center which consumes more time. Difficulties can be over crossed using the trending technology of Machine learning. The idea of the model is to prognosticate the occurrence of a diabetic with high accuracy. Therefore, two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage. Therefore two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage.


2014 ◽  
Vol 687-691 ◽  
pp. 2693-2697
Author(s):  
Li Ding ◽  
Li Mao ◽  
Xiao Feng Wang

One single machine learning algorithm presents shortcomings when the data environment changes in the process of application. This article puts forward a heteromorphic ensemble learning model made up of bayes, support vector machine (SVM) and decision tree which classifies P2P traffic by voting principle. The experiment shows that the model can significantly improve the classification accuracy, and has a good stability.


Author(s):  
Karen Song

This project focuses on using machine learning classification algorithms to determine whether two people are 6 feet apart or not. Two Raspberry Pis were used simulate smart phones. RSSI values of the Bluetooth beacons transmitted between the Raspberry Pis were collected and recorded to train the classifier. The Gaussian Support Vector Machine Classifer yielded the highest testing accuracy of 79.670 and the Decision Tree Classifier yielded the highest AUC of 0.80.


Recycling ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 40 ◽  
Author(s):  
Florian Gruber ◽  
Wulf Grählert ◽  
Philipp Wollmann ◽  
Stefan Kaskel

This work contributes to the recycling of technical black plastic particles, for example from the automotive or electronics industries. These plastics cannot yet be sorted with sufficient purity (up to 99.9%), which often makes economical recycling impossible. As a solution to this problem, imaging fluorescence spectroscopy with additional illumination in the near infrared spectral range in combination with classification by machine learning or deep learning classification algorithms is here investigated. The algorithms used are linear discriminant analysis (LDA), k-nearest neighbour classification (kNN), support vector machines (SVM), ensemble models with decision trees (ENSEMBLE), and convolutional neural networks (CNNs). The CNNs in particular attempt to increase overall classification accuracy by taking into account the shape of the plastic particles. In addition, the automatic optimization of the hyperparameters of the classification algorithms by the random search algorithm was investigated. The aim was to increase the accuracy of the classification models. About 400 particles each of 14 plastics from 12 plastic classes were examined. An attempt was made to train an overall model for the classification of all 12 plastics. The CNNs achieved the highest overall classification accuracy with 93.5%. Another attempt was made to classify 41 mixtures of industrially relevant plastics with a maximum of three plastic classes per mixture. The same average classification accuracy of 99.0% was achieved for the ENSEMBLE, SVM, and CNN algorithms. The target overall classification accuracy of 99.9% was achieved for 18 of the 41 compounds. The results show that the method presented is a promising approach for sorting black technical plastic waste.


2021 ◽  
Vol 4 (2) ◽  
pp. 12
Author(s):  
M. Adil Rao ◽  
Tafseer Ahmed

This study presents a machine learning system to identify the poet of a given poetic piece consisting of 2 lines (i.e. a couplet) or more. The task is more difficult than the general task of author attribution, as the number of words in verses and poems are usually less than the number of articles present in author attribution datasets. We applied classification algorithms with different sets of feature configurations to run several experiments and found that the system performs best when support vector machine using a combination of unigram and bigram are used . The best system (for 5 Urdu poets) has the accuracy of 88.7%.


Author(s):  
Karen Song

This project focuses on using machine learning classification algorithms to determine whether two people are 6 feet apart or not. Two Raspberry Pis were used simulate smart phones. RSSI values of the Bluetooth beacons transmitted between the Raspberry Pis were collected and recorded to train the classifier. The Gaussian Support Vector Machine Classifer yielded the highest testing accuracy of 79.670 and the Decision Tree Classifier yielded the highest AUC of 0.80.


Sign in / Sign up

Export Citation Format

Share Document