Acceleration Data Acquisition and Analysis Method of Shaking Table Test

2015 ◽  
Vol 724 ◽  
pp. 205-212 ◽  
Author(s):  
Shao Feng Chai ◽  
Ping Wang ◽  
Zhi Jian Wu ◽  
Jun Wang ◽  
Gao Feng Che

Shaking table test is an important means of simulated earthquake in laboratory, slope shaking table test data provide a scientific basis for analysis of dynamic stability and instability mechanism of slopes. Sine vibration table test data processing is different from general frequency domain analysis method, need real-time data processing in time domain. Taking the sine sweep test conditions, which is one of the conditions in "Earthquake landslide and slope prevention and control technology research on shaking table test", as an example. Describes the layout of sensors in shaking table test and the reasons; Sine sweep test load and aim; and listed the steps and methods of the sine sweep test in data processing; Through the processing and analysis of test data identified the vibration frequency of model and shaking table system is 30Hz, damping ratio is 2.06%; Analysis and calculation of the different sections of the slope and position of the amplification coefficient. A methodological guidance for shaking table test and dynamic response analysis of the slope is provided.

Author(s):  
Akihito Otani ◽  
Izumi Nakamura ◽  
Tomoyoshi Watakabe ◽  
Masaki Morishita ◽  
Tadahiro Shibutani ◽  
...  

Abstract A Code Case, JSME S NC1, NC-CC-008, in the framework of JSME Nuclear Codes and Standards has been published. New seismic evaluation methodology for piping by utilizing advanced elastic-plastic response analysis method and strain-based fatigue criteria has been incorporated into the code case. It can achieve more rational seismic design than the current rule. This paper demonstrates validity and applicability of fatigue evaluation method proposed in the code case. Experimental results of a shaking table test for a piping model is used for comparing the evaluation by the current rule with one by the code case. As a result, it is confirmed that the code case can provide a rational and conservative result in the fatigue evaluation of piping. Moreover, cycle counting in the fatigue evaluation was examined for further progress of the code case.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247677
Author(s):  
Delong Huang ◽  
Aiping Tang ◽  
Qiang Liu ◽  
Dianrui Mu ◽  
Yan Ding

Transient ground displacement (TGD) that is caused by earthquakes can damage underground pipes. This damage is especially critical for the joints, elbows and tees of the pipes which play an important role in the operation of a pipe network. In this study, a scale pipe network with both elbows and tees, as well as some components of the pipe network with only tees or elbows, has been investigated. The response of the nodes of a pipe network, when installed in non-uniform geology, was analyzed using the shaking table test and ABAQUS finite element simulation. This paper has firstly introduced the preparation of the test and the developed finite element model. Then the system response in terms of strain, the friction, the bending deformation, the node deformation amplification coefficient and the pipe-soil relative displacement along the pipe axis of the pipe network and two pipe network components have been analyzed explaining the correlation between these responses. Finally, the influence of elbows and tees on the pipe network was analyzed, and the conclusions that have been reached about how tees and elbows can change the response of a pipe network during an earthquake can provide theoretical support for the seismic design and layout of an underground pipe network.


2020 ◽  
Vol 8 ◽  
Author(s):  
Changwei Yang ◽  
Liang Zhang ◽  
Yang Liu ◽  
Denghang Tian ◽  
Xueyan Guo ◽  
...  

Taking a bedding rock slope with weak structural plane as the prototype, a shaking table test with a similarity ratio of 1:10 is designed and carried out. By analyzing the acceleration and displacement responses at different positions of the slope, the seismic response and instability mechanism of rock bedding slope under different seismic amplitudes, frequencies, and durations are studied. Before the failure of the slope, the rock bedding slope shows an obvious “elevation effect” and “surface effect” under the action of Wenchuan Wolong earthquake wave with different amplitudes. With the increase of the amplitude of the input seismic wave, the elevation effect and the surface effect gradually weaken. When the amplitude of the seismic wave reaches 0.9 g, the rock bedding slope begins to show damage, which demonstrates that the difference of PGA amplification coefficients on both sides of the weak structural plane increases significantly. Compared with the Kobe seismic wave and Wenchuan Wolong seismic wave, the excellent frequency of EL Centro seismic wave is closer to the first-order natural frequency of slope model and produces resonance phenomenon, which leads to the elevation effect of PGA amplification coefficient more significantly. Through the analysis of the instability process of rock bedding slope, it can be found that the failure mechanism of the slope can be divided into two stages: the formation of sliding shear plane and the overall instability of the slope.


Author(s):  
S. Gao ◽  
Z. Ye ◽  
C. Wei ◽  
X. Liu ◽  
X. Tong

<p><strong>Abstract.</strong> The high-speed videogrammetric measurement system, which provides a convenient way to capture three-dimensional (3D) dynamic response of moving objects, has been widely used in various applications due to its remarkable advantages including non-contact, flexibility and high precision. This paper presents a distributed high-speed videogrammetric measurement system suitable for monitoring of large-scale structures. The overall framework consists of hardware and software two parts, namely observation network construction and data processing. The core component of the observation network is high-speed cameras to provide multiview image sequences. The data processing part automatically obtains the 3D structural deformations of the key points from the captured image sequences. A distributed parallel processing framework is adopted to speed up the image sequence processing. An empirical experiment was conducted to measure the dynamics of a double-tube five-layer building structure on the shaking table using the presented videogrammetric measurement system. Compared with the high-accuracy total station measurement, the presented system can achieve a sub-millimeter level of coordinates discrepancy. The 3D deformation results demonstrate the potential of the non-contact high-speed videogrammetric measurement system in dynamic monitoring of large-scale shake table tests.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaojun Li ◽  
Chenning Song ◽  
Guoliang Zhou ◽  
Chao Wei ◽  
Ming Lu

Water tank is one important component of passive containment cooling system (PCS) of nuclear island building. The sloshing frequency of water is much less than structure frequency and large-amplitude sloshing occurs easily when subjected to seismic loadings. Therefore, the sloshing dynamics and fluid-structure interaction (FSI) effect of water tank should be considered when the dynamic response of nuclear island building is analyzed. A 1/16 scaled model was designed and the shaking table test was done, in which the hydrodynamic pressure time histories and attenuation data of wave height were recorded. Then the sloshing frequencies and 1st sloshing damping ratio were recognized. Moreover, modal analysis and time history analysis of numerical model were done by ADINA software. By comparing the sloshing frequencies and hydrodynamic pressures, it is proved that the test method is reasonable and the formulation of potential-based fluid elements (PBFE) can be used to simulate FSI effect of nuclear island building.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Yan ◽  
Guo Li ◽  
Kang An ◽  
Kefeng Yue ◽  
Zhi Lin

The non-uniform stratum and uneven surface have the complicated seismic spatial variability. The seismic response of high pier and small radius curved bridge caused by the seismic specificity of this kind of terrain has not been systematically studied. According to the multi-point excitation theory of long-span structures and the similar theory of shaking table test in model structures, a high pier with small radius curved girder bridge was used as the research object. The shaking table test of real bridge model was carried out to study the seismic response laws of this kind of bridge under multi-point excitation. The results show that the designed seismic wave expansion device can meet the test requirements. The frequency of the model structure decreases rapidly and the damping ratio increases during the whole test process. The local terrain effect amplifies the seismic response of high pier and small radius curved bridge. The seismic response of high pier and small radius curved bridge is affected by different frequency spectrum seismic waves, and there is a big difference. Based on the above results, the impact of multi-point excitation should be considered in seismic design of high pier with small radius curved bridge.


Sign in / Sign up

Export Citation Format

Share Document