The Design and Characteristic Analysis of the Steering System of Balanced Rocker Wheeled Chassis

2015 ◽  
Vol 743 ◽  
pp. 3-10
Author(s):  
Xiao Lin Xie ◽  
Feng Gao

According to the particularity of balanced rocker wheeled chassis, a four wheel independent steering system was designed. The chassis of the two degree of freedom model was established, the proportional feedback control of yawing angular velocity and front wheel Angle-yawing angular velocity was simulated, the chassis steering performance under the two classic control methods was analyzed, then the dynamics of mechanical model was established in ADAMS software, the steering performance under different speed was simulated. At last, compared with two simulation results, it was proved that the steering system has good handling stability.

2011 ◽  
Vol 23 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Nobutaka Wada ◽  
◽  
Akihiro Takahashi ◽  
Masami Saeki ◽  
Masaharu Nishimura ◽  
...  

We have proposed a design method of an active front wheel steering controller that guarantees closed-loop stability under lateral tire force saturation. The controller uses lateral tire force information to counteract destabilization caused by such saturation. The controller suppresses slip angle magnitude while lateral tire force is saturated. Numerical simulation results confirmed the effectiveness of the proposed method.


2018 ◽  
Vol 18 ◽  
pp. 32 ◽  
Author(s):  
Csenge A. Molnar ◽  
Ambrus Zelei ◽  
Tamas Insperger

A two-degree-of-freedom mechanical model was developed to analyze human balancing on rolling balance board in the frontal plane. The human nervous system is modeled as a proportionalderivative controller with constant feedback delay. The radius R of the wheels and the board distance h measured from the center of the wheel are adjustable parameters. Simulation results using the mechanical model were compared with real balancing trials recorded by an OptiTrack motion capture system. The goal of the paper is to investigate whether the two-degree-of-freedom model is accurate enough to model the balancing task and to introduce a stabilometry parameter in order to characterize balancing skill in case of different set of R and h. The conclusion is that the angle of the upper body and the angle of the head also play an important role in the balancing process therefore a three- or four-degree-of-freedom model is more appropriate.


2014 ◽  
Vol 1078 ◽  
pp. 187-190
Author(s):  
Zhong Ying Liu

Based on the two degree of freedom model of kiloton all-terrain crane, he effects of relationship of deflection angle on turning radius were investigated in multi-axle steering system. MATLAB/Simulink was used to analyze the relationship of every axle in multi-axle steering and optimize the minimum turning radius. The studies show that the kiloton all-terrain crane adapted all-wheel steering driving at 5speed , and the front wheel angle was 32.3°, as compared to the rolling radius before optimization, the turning radius in all wheel turnaround reduced by 33%, which improved the vehicle capacity through the complex curve and increased the vehicle steering flexibility.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


Author(s):  
Huiran Wang ◽  
Qidong Wang ◽  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Dongkui Tan

To reduce the adverse effect of the functional insufficiency of the steering system on the accuracy of path tracking, a path tracking approach considering safety of the intended functionality is proposed by coordinating automatic steering and differential braking in this paper. The proposed method adopts a hierarchical architecture consisting of a coordinated control layer and an execution control layer. In coordinated control layer, an extension controller considering functional insufficiency of the steering system, tire force characteristics and vehicle driving stability is proposed to determine the weight coefficients of automatic steering and the differential braking, and a model predictive controller is designed to calculate the desired front wheel angle and additional yaw moment. In execution control layer, a H∞ steering angle controller considering external disturbances and parameter uncertainty is designed to track desired front wheel angle, and a braking force distribution module is used to determine the wheel cylinder pressure of the controlled wheels. Both simulation and experiment results show that the proposed method can overcome the functional insufficiency of the steering system and improve the accuracy of path tracking while maintaining the stability of the autonomous vehicle.


Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


2013 ◽  
Vol 718-720 ◽  
pp. 1673-1676
Author(s):  
Yun Chao Wang ◽  
Wen Jie Pang ◽  
Mei Zhou

Digging performances of excavator is a key important index for evaluation of excavator. It is a very complex and heavy work to compute digging performance of excavator. So a compact hydraulic excavator model was built by ADAMS software. The theoretical maximum tool force of excavator was analyzed. For bucket digging mode, the maximum tool force were analyzed for boom cylinder seven positions during the whole working range and the effect of different factors were discussed. The practical maximum tool force was gained. The actual tool force variations were found through the analysis of simulation results. It provides the basis for design and improvement of excavator.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


2009 ◽  
Vol 419-420 ◽  
pp. 45-48 ◽  
Author(s):  
Wen Hsiang Hsieh ◽  
Chia Heng Tsai

The purpose of this study is to present a novel concept for inline vibrating conveyors, and verify its feasibility by kinematic simulation. First, new conveyor is presented, and its merits are discussed. Then, its kinematically equivalent linkage is described. Moreover, the kinematic dimensions are investigated from its geometry. Finally, the solid model for the proposed design is established, then kinematic simulation is performed by ADAMS software. The simulation results indicate that the proposed new design can effectively advance the workpiece.


Author(s):  
R. W. Toogood

Abstract A number of programs have been developed for the automatic symbolic generation of efficient computer code for the dynamic analysis of serial rigid and flexible link manipulators. Code for both the inverse and the direct dynamics computations can be generated. The symbolic generators allow the robot base to be given an arbitrary linear acceleration anchor angular velocity and acceleration. The efficiency of the generated code is an important consideration for simulation studies and/or implementation in control systems. This paper briefly describes the symbolic generation and simplification techniques. The added computational load due to including the base motion is discussed. Some dynamics simulation results are presented for a 3R rigid link manipulator mounted on an oscillating base, which graphically illustrates the effect of the base movement on the dynamics.


Sign in / Sign up

Export Citation Format

Share Document