Erosion Mitigation Using Submerged Breakwater Composed of Artificial Reefs

2015 ◽  
Vol 744-746 ◽  
pp. 1171-1174
Author(s):  
Kyu Han Kim ◽  
Bum Shick Shin

In this study, erosion mitigation by submerged breakwater with artificial reefs is investigated among other means of countermeasures. Beach erosion mechanism near the submerged breakwater and the performance of artificial reef blocks are analyzed in the laboratory. Two-dimensional and three-dimensional laboratory experiments are applied to the analysis. The results of two-dimensional experiments prove that new artifi-cial blocks showed a better performance than the existing blocks in terms of wave attenuation due to wave breaking turbulence near the crest of the structure. Three-dimensional experiments show reduced return flow velocity by half by installing another type of new artificial block in between submerged breakwaters. Return flow has been creating vulnerability in countermeasures by submerged breakwater. Therefore, artifi-cial reef blocks suggested by this study offer solutions to the existing mitigation problems with submerged breakwater.

2012 ◽  
Vol 1 (33) ◽  
pp. 107 ◽  
Author(s):  
Kyuhan Kim ◽  
Sungwon Shin ◽  
Chongkun Pyun ◽  
Hyun Dong Kim ◽  
Nobuhisa Kobayashi

Two-dimensional and three-dimensional laboratory experiments were conducted to investigate not only the flow mechanism near the submerged breakwater but the performance of two newly developed eco-friendly artificial reef blocks. The results of two-dimensional experiments proved that new artificial blocks (EREEB) showed a better performance than TTP in terms of wave attenuation due to wave breaking turbulence near the crest of the structure. Three-dimensional experiments convinced that installing another type of new artificial block (WERF) in between submerged breakwater reduced the return flow velocity more than 50% compared with the gap between the breakwaters is empty. Therefore, these two types of newly developed artificial reef block can contribute the counter measure of beach erosion and habitat of sea lives.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2801
Author(s):  
Taeyoon Kim ◽  
Seungil Baek ◽  
Yongju Kwon ◽  
Jooyong Lee ◽  
Sung Min Cha ◽  
...  

Coastal erosion, a worldwide social issue, has garnered substantial attention. Numerous methods have been implemented to control coastal erosion problems; however, the presence of rigid structures limits erosion mitigation, thereby causing various challenges. For instance, in the case of submerged breakwaters, local scour in front of the structure and scour caused by the flow occurring in open inlets affect the subsidence and stability of the structure and can also cause structural failure. To solve these problems, this paper proposes a hybrid method of using a submerged breakwater with an artificial coral reef installation; further, this study evaluates the attenuation of waves and mitigation of sediment transportation through large-scale 3D hydraulic experiments. We found that the hybrid method with an artificial coral reef installed in the open inlet shows excellent wave control and plays a clearly beneficial role in the advancement of the shoreline. The artificial coral reef method reduced the return flow generated by the drag force at the breakwater shoulder and open inlet. In addition, scour at the breakwater shoulder was inhibited by collecting the sand escaping offshore. Simultaneously, scour at the open inlet was also mitigated. The application of the hybrid method compensated for the problems caused by local scour and erosion in the submerged breakwater, thereby leading to the improvement of its function. Therefore, the hybrid method proposed in this paper was determined to be applicable not only for submerged breakwaters, but also for various structures for controlling coastal erosion.


Acoustics ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 25-41
Author(s):  
Muhammad ◽  
C.W. Lim ◽  
Andrew Y. T. Leung

The current century witnessed an overwhelming research interest in phononic crystals (PnCs) and acoustic metamaterials (AMs) research owing to their fantastic properties in manipulating acoustic and elastic waves that are inconceivable from naturally occurring materials. Extensive research literature about the dynamical and mechanical properties of acoustic metamaterials currently exists, and this maturing research field is now finding possible industrial and infrastructural applications. The present study proposes a novel 3D composite multilayered phononic pillars capable of inducing two-dimensional and three-dimensional complete bandgaps (BGs). A phononic structure that consisted of silicon and tungsten layers was subjected to both plane and surface acoustic waves in three-dimensional and two-dimensional periodic systems, respectively. By frequency response study, the wave attenuation, trapping/localization, transmission, and defect analysis was carried out for both plane and surface acoustic waves. In the bandgap, the localized defect state was studied for both plane and surface acoustic waves separately. At the defect state, the localization of both plane and surface acoustic waves was observed. By varying the defect size, the localized frequency can be made tailorable. The study is based on a numerical technique, and it is validated by comparison with a reported theoretical work. The findings may provide a new perspective and insight for the designs and applications of three-dimensional phononic crystals for surface acoustic wave and plane wave manipulation, particularly for energy harvesting, sensing, focusing and waves isolation/attenuation purposes.


2012 ◽  
Vol 1 (33) ◽  
pp. 54 ◽  
Author(s):  
Angus Jackson ◽  
Rodger Tomlinson ◽  
Bobbie Corbett ◽  
Darrell Strauss

In response to the increasing occurrences of beach erosion along Surfers Paradise and Main Beaches - Gold Coast, Australia, the Northern Gold Coast Beach Protection Strategy [NGCBPS] was developed to widen the beach by 20-30m as well as improving surfing conditions as a secondary objective. The strategy, implemented in 1999- 2000, involved large-scale beach nourishment and construction of a submerged breakwater “reef” to act as a control point at Narrowneck. Construction of the reef involved innovative filling and placement methods using very large sand filled geotextile containers coupled with significant advances with regards to design of the geotextile material and containers. In the 11 years since construction, there has been substantial monitoring of the project since its completion in late 2000 including: - video imaging using webcams; hydrographic and beach surveys; aerial and oblique photography; surf and surf safety observations and GPS surfing track plots; and geotextile container condition and stability. This paper presents an update on the performance of the reef over the last four years. In particular, the response of the structure and the shoreline to a series of major storm events in 2009 has been examined. The results have shown that the erosion caused by these major events was accommodated within the wider beach created in 1999. Over the next 2 years there was a gradual recovery in the lee of the reef with a subtle groyne effect resulting in an even larger increase in the width of the updrift beach. A detailed underwater condition survey was also undertaken in 2011, to determine changes in the condition of the geotextile containers. This revealed a number of containers missing or damaged, and that seaward containers were covered by sand. The marine habitat which has been a feature of the reef has been impacted by the increased coverage of sand, but still shows high abundance and biodiversity.


2017 ◽  
Vol 31 (25) ◽  
pp. 1750225 ◽  
Author(s):  
Xiaoqin Zhou ◽  
Jun Wang ◽  
Rongqi Wang ◽  
Jieqiong Lin

The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam–spring–mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1526
Author(s):  
Sunghoon Hong ◽  
Seungil Baek ◽  
Yeonjoong Kim ◽  
Jooyong Lee ◽  
Adi Prasetyo ◽  
...  

Coastal resilience has received significant attention for managing beach erosion issues. We introduced flexible artificial coral reef (ACR) structures to diminish coastal erosion, but planar installation effects should be considered to evaluate the feasibility of coastline maintenance. In this study, we conducted a three-dimensional large-scale experiment to investigate the characteristics of planar installation of ACR, focusing on the wave mitigation performance, wave profile deformation with delay, nearshore current movement, deposition and erosion trends, and beach profile variation. We found that the ACR diminished the wave height by ~50% and the current intensity by ~60% compared with that of a conventional submerged breakwater made of dolos units. Using the dispersion velocity of the dye in a tracer experiment, the dispersion time of the ACR was approximately 1.67-times longer than that of the dolos and the current velocity was reduced, revealing that ACR significantly reduced structural erosion. With dolos, severe erosion of >10 cm occurred behind the structure, whereas there was only slight erosion with the ACR. Moreover, in a vertical beach-profile analysis, the ACR exhibited greater shoreline accretion than that of dolos. These results indicate the potential of ACR in improving coastal resilience.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Sign in / Sign up

Export Citation Format

Share Document