The Influence of Compressive Strength of EPS Concrete Using Fiberglass with Curing and Non Curing Treatment

2015 ◽  
Vol 747 ◽  
pp. 226-229
Author(s):  
Irpan Hidayat ◽  
Jemima Devina Halim

Concrete is a mixture of portland cement, fine aggregate, coarse aggregate and water, with or without additives which form a solid mass. The purpose of this study was to find and innovative method of producing concrete mix from solid waste material as alternative. The alternative materials used in concrete mix was fiberglass. Material reduction in the sand on the concrete can decreases the strength until the fiberglass material added and increase the compressive strength on concrete. The composition of fiberglass that used in this study was 0%, 0.5%, 1%, 1.5%, 2%, 2.5%. The methodology used is the design of concrete mix in according to SNI 03-2834-2000. The results are concrete with the addition of EPS can reduce the density and the compressive strength of normal concrete, concrete EPS was added to increase the value of compressive strength fiberglass. The addition of fiberglass in concrete EPS only on the variable of 0.5% - 1% fiberglass, if greater than 1%, the compressive strength of concrete decreased because the material has not homogeneous concrete during mixing. The largest density value of 10% EPS concrete with fiberglass on the concrete test 28 days is the concrete EPS 10% + 0.5% fiberglass by weight of the curing process and the type of 2127.73 MPa and compressive strength are the largest and EPS concrete with compressive strength amounted to 11.277 MPa. The addition of 10% EPS can reduce the compressive strength of concrete at 3.75%. The addition of fiberglass obtained with a percentage of 0.5% - 1% is the most effective additions so as to improve the quality of concrete by 0.74%. Concrete with compressive strength has a curing system which is much better than the non-curing concrete, because concrete experience of concrete hydration reaction process which takes place optimally.

2019 ◽  
Vol 2 (1) ◽  
pp. 61-66
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Chairul Anwar ◽  
Liska Novianti

The Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles and usually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitute for normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic test examination, it can be seen that in testing the characteristics of pumice sand to the specifications of normal sand in specific gravity testing and weight testing of quicksand obtained results that are smaller than the specifications of normal sand and absorption tests obtained results greater than specifications on normal sand. The results of the normal sand compressive strength at BN is 250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is 224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete, the quality of K-250 is different in comparison to the compressive strength of concrete in normal sand and pumice sand concrete shows almost the same results. Therefore, more in-depth research is needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Liska Novianti

Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles andusually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitutefor normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic testexamination, it can be seen that in testing the characteristics of pumice sand to the specificationsof normal sand in specific gravity testing and weight testing of quicksand obtained results thatare smaller than the specifications of normal sand and absorption tests obtained results greaterthan specifications on normal sand. The results of the normal sand compressive strength at BN is250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete,the quality of K-250 is different in comparison to the compressive strength of concrete in normalsand and pumice sand concrete shows almost the same results. Therefore, more in-depth researchis needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 1 (1) ◽  
pp. 244-250
Author(s):  
Alina Pietrzak

Abstract Due to a constant increase in generating the amount of sewage waste it is necessary to find an alternative method of its use or disposal. One of such methods can be utilization of sewage sludge in construction materials industry, particularly in concrete technology and other materials based on cement. It allows using waste materials as a passive additive (filler) or also as an active additive (replacement of part of bonding material). The article aims at presenting the analysis of the effect of adding slag, achieved from wastewater sludge incineration in sewage treatment plant, on properties and quality of concrete mix and hardened concrete. Using an experimental method, the researcher designed the composition of the control concrete mix, which was then modified by means of slag. For all concrete mixtures determined – air content with the use of pressure method and consistency measured by the use of concrete slump test. For all concrete series the following tests were conducted: compressive strength of concrete after 7, 28 and 56 days of maturing, frost resistance for 100 cycles of freezing and thawing, water absorption. The use of slag, ground once in the disintegrator, causes a decrease of in compressive strength of concrete samples in relation to the control concrete series as well as bigger decrease in compressive strength after frost resistance test.


2021 ◽  
Vol 5 (2) ◽  
pp. 74-84
Author(s):  
Syf. Umi Kalsum ◽  
Betti Ses Eka Polonia ◽  
Hurul 'Ain

Recycling is one way that is used to minimize the amount of waste that exists. Recycling is also a process to reduce the use of new raw materials, reduce energy use, reduce pollution, land degradation and greenhouse gas emissions. Materials that can be recycled consist of waste of glass, plastic, paper, metal, textiles and electronic goods. Glass has characteristics suitable as concrete aggregates, considering that glass is a material that does not absorb water. In addition, glass has high abrasion resistance. Meanwhile, the waste glass flux lowers the temperature to the temperature at which the formers will melt. Stabilizers in glass waste are made of calcium carbonate, which makes the glass waste solid and water-resistant. This glass waste is recycled by mixing it into the concrete mix. The recycling method is done by pounding the glass and putting it into the concrete mix stage. The purpose of mixing the glass waste is expected to increase the compressive strength of concrete. The use of glass waste as a mixed material affects the compressive strength of the concrete. The concrete with the most inferior to highest compressive strength is 4% variation concrete, 2% variation concrete, and traditional concrete. Optimal percentage addition of glass waste impacts on maximum concrete compressive strength is 2% mixture variation which obtained 11,88 Mpa & 11,32 Mpa.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-54
Author(s):  
Neti Rahmawati ◽  
Irwan Lakawa ◽  
Sulaiman Sulaiman

Concrete is one of the most widely used building materials today interms of physical construction. Concrete is made from a mixture offine, coarse aggregate, cement, and water with a certain ratio, aswell as materials that are usually added to the concrete mixtureduring or during mixing, to changing the properties of concrete tomake it more suitable in certain jobs and more economical, can alsobe added with certain other mixed materials as needed if deemednecessary. Seashells can be used to mix concrete. This study aims todetermine whether the addition of shells aggregate shells in aconcrete mixture can affect the mechanical properties of concrete.The specimens used are in the form of cubes with a size of 15cm x 15cm x 15 cm, consisting of additional concrete coarse and fineaggregate with shell substitution percentage of 0%, 15%, 20% with atotal sample of 45, with the planned concrete quality of K225. Theuse of sea shells in increasing the compressive strength of concrete isbetter used as fine aggregate than coarse aggregate. The use of seashells as a substitute for fine aggregates achieves maximum resultsat 20% composition.


2020 ◽  
Vol 309 ◽  
pp. 114-119
Author(s):  
Ekaterina S. Gerasimova ◽  
Elizaveta Gumirova

The paper is devoted to research of influence of “MC-Bauchemie” additions on the fine-grained concrete properties, namely compressive strength. The results of testing of fine-grained concrete made on the basis of two different natural sands are presented. Characteristics of the initial materials used in the work (Portland cement, sands and additions-plasticizers) are given. The basic methods of preparation of mixes and testing of hardened cement stone and concrete are described. The optimal quantity of the selected additions on the example of cement paste and stone are established. Mobility dependences of concrete mixes on a type and quantity of plasticizers are received. The dependence of the additions effectiveness on the mobility of the concrete mix on the quality of the fine aggregate is shown. It is established that the most effective additive is PowerFlow 3100, its optimal amount for obtaining fine-grained concrete on the basis of JSC “Kar’er Myisyi” sand is 0.2 %.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Fatkhurrohim Fatkhurrohim ◽  
Ahmad Mashadi ◽  
Muhammad Amin ◽  
Dwi Sat Agus Yuwana

<p align="center">ABSTRACT</p><p>After the eruption of Mount Merapi, which occurred on October 26th 2010 produced an abundance of cold lava sand. The researcher attempted to conduct test of cold lava sand as fine aggregate concrete. This study aims to compare the compressive strength of concrete by using a cold lava sand taken from the Kali Putih, Salam, Magelang and sand are not affected by cold lava taken from Kali Blondo located in the Blondo, Magelang. The method of this study include: testing of materials, manufacturing of test specimens and test concrete performance after 7, 14, 21 days and 28 days. From the test result of concrete compressive strength we can know strength combaine ineach mixtureby weight volume ratio 1pc: 2 ps; 3kr with 0,6 water cement ratio. Based on the results of testing the quality of the sand material taken from the Kali Putih, Salam, Magelang to the mud content, unit weight, specific gravity, water absorption,and sieve analysis PUBI 1982 qualifies mixed concrete.The result of comparative testing of the quality of the sand material taken from kali blondo to sieve analysis are not eligible PUBI 1982. The results showed that the compressive strength of concrete on average, the highest shown in the concrete that uses cod lava sand derived from the down stream of Kali Putih, the average compressive strength of 279,51 kg/cm2, with the weight of the specimen by an average of 11, 5 kg.</p>


2021 ◽  
Vol 3 (2) ◽  
pp. 141-148
Author(s):  
Dicaprio Resen Bunga' ◽  
Frans Phengkarsa ◽  
Desi Sandy

In general, fine aggregate and coarse aggregate as the main components of concrete come from nature so that one day it will run out, alternative substitutes are needed. One of the alternative materials is Nickel Slag. Nickel slag is a type of rock dumped from the nickel industry. Limestone is also used as an alternative to fine aggregate. This study aims to determine the strength of concrete and the relationship between the characteristics of the concrete using nickeI sIag and limestone as a substitute for fine aggregate to the quality of the concrete. As for the variations of 0%, 10% and 20% and the percentage of using limestone as a substitute for fine aggregate is 10%. The method of mixing the concrete uses the SNI-03-2834-2000 method with a planned concrete quality of 42Mpa. From this research, it was found that the compressive strength of concrete with variations of 0%, 10% and 20% were respectively 42.360 MPa, 42.347 MPa and 41.781 MPa, the split tensile strength test with variations of 0%, 10% and 20% respectively was equal to 3.94 MPa, 3.064 MPa and 2.293 MPa and the flexural strength testing with variations of 0%, 10% and 20% were respectively 4.242 MPa, 4.068 MPa and 3.179 MPa. The relationship of split tensile strength for the variation of Nickel Slag variations 0%, 10%, and 20% is 9,242%, 7,178%, and 7% of the compressive strength, respectively, the relationship of split tensile strength for the variation of Nickel Slag variations 0%, 10%, and 20% of 0.65, 0.62, and 0.57 of compressive strength, respectively. From the resuIts of the study, it was concIuded that the concrete mixture with nickel and limestone slag substitution resulted in a decrease in strength as the percentage of nickel slag substitution increased.


2021 ◽  
Vol 21 (3) ◽  
pp. 129-138
Author(s):  

Normal concrete uses fine aggregate and coarse aggregate with concrete density 2200 kg/m3-2400 kg/m3 with a compressive strength of about 15-40 MPa [1]. The purpose of this study is to determine characteristics of the concrete aggregate and the compressive strength of the concrete design based on the DOE (Department of Environment) method and the SNI Standard. In this research, the use of nugmet shell was varied as follows: 0%, 0,25%, 0,50%, 0,75% and 1% of the cement weight. The results showed that the use of nutmeg shells as a normal concrete affected the specific gravity and the value compressive strength of concrete. The higher the percentage of nutmeg shells, the lower the specific gravity and compressive strength of the concrete. The average value of density to nutmeg shell concrete (NSC) 2254.72 (kg/m3) and normal concrete 2304.32 (kg/m3). The compressive strength of normal concrete is 224.2 kg/cm2 and the nutmeg shell concrete (NSC) the composition of 0.25% and 0.5% obtained by 129.6 kg/cm2 and 140.0 kg/cm2 increases the use of nutmeg shell 0.75% and 1% obtained value ​​of 117.6 kg/cm2 and 118.1 kg/cm2 decreased at the age of 28 days. The compressive strength of normal concrete 22 MPa while the maximum nutmeg shell concrete (NSC) 14 MPa, so it does not meet the quality of normal concrete in general.


Sign in / Sign up

Export Citation Format

Share Document