Comparative Study Floor Flexural Behavior of Profiled Steel Sheeting Dry Board between Normal Concrete and Geopolymer Concrete In-Filled

2015 ◽  
Vol 754-755 ◽  
pp. 364-368
Author(s):  
Mohd Isa Jaffar ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Rafiza Abd Razak

This study investigates the behavior of in-filled materials of profiled steel sheeting dry board (PSSDB) floor system. Two tests were conducted, namely, push-out test to know the connection stiffness and bending test on the PSSDB panel under the influence of different in-filled materials. Result of the push-out test shows that the connection stiffness of the geopolymer concrete-filled PSSDB is 331% higher than that of PSSDB that is filled with normal concrete. This connection stiffness contributed to the reduction of deflection value of 21% in the middle of the midspan for full-board geopolymer concrete in-filled panel bending test. This phenomenon triggered the increase of interaction within the composite system, making the panel that is filled with the geopolymer concrete 25% stronger than the normal concrete–filled panel.

2018 ◽  
Vol 775 ◽  
pp. 589-595 ◽  
Author(s):  
Lee Siong Wee ◽  
Oh Chai Lian ◽  
Mohd Raizamzamani Md Zain

This paper investigates the mechanical properties of engineered cementitious composites (ECC) in terms of compressive strength and flexural behaviour. A new version of ECC made of cement, ground granulated blast-furnace slag (GGBS), local sand, polypropylene (PP) fibers, water and superplasticizer (SP) was employed in this study. Few series of ECC mixtures were designed, cast, and tested in compression and flexural after 28 days of curing. The effect of the fiber content and sand content were studied in different cement-GGBS combination. Compression test results indicated that all ECC mixtures obtained at least 1.8 times compressive strength compared to normal concrete. They also demonstrated more ductile flexural behavior compared to normal concrete from three-point bending test. Increasing fiber content from 1.5% to 2.0% and 2.5% has negative effect on compressive strength but significantly improved modulus of toughness of ECC mixtures. The compressive strength of ECC was reduced when the sand to binder ratio adjusted to 0.4 and 0.6. The flexural behaviour of ECC was slightly improved with the increasing of sand content.


2015 ◽  
Vol 754-755 ◽  
pp. 354-358
Author(s):  
Mohd Isa Jaffar ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kartini Kamarulzaman ◽  
Mahmood Seraji

Profiled Steel sheeting Dry Board (PSSDB) system is a lightweight composite structural system consisting of profiled steel sheeting, mechanically connected to a dry board using self-drilling and self-tapping screw. The objective of this study is to investigate the effect of geopolymer concrete infill in PSSDB system with half board (PSSHDB), focus on its deflection serviceability limit at mid-span region. Geopolymer concrete was chosen to be as infill in the PSSDB floor system due to its high compressive strength as compared to normal concrete and its potential as an alternative concrete since it does not utilize Ordinary Portland Cement (OPC). This study used a modified PSSHDB panel using a half-sized dry board. In achieving this objective, forecasting the behavior of the system in laboratory experiments will be taken into account as the research approach. Experimental results found that with the use of geopolymer concrete infill, the mid-span deflection on the PSSHDB floor system can be reduced to 41% as compared to the use of normal concrete infill. This indicates an increase in the stiffness of this system due to the effect of infill geopolymer concrete.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


2018 ◽  
Author(s):  
◽  
Ayman Elzohairy

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The steel-concrete composite beam represents a structural system widely employed in both buildings and girder bridges. The coupling between steel beams and concrete flanges assures both economic and structural benefits because of quick construction of steel structures and large increase in stiffness due to the presence of concrete. Strengthening with external post-tensioning (PT) force is particularly effective and economical for long-span steel-concrete composite beams and has been employed with great success to increase the bending and shear resistance and correct excessive deflections. Applying external PT force to the steel-concrete composite beam is considered an active strengthening technique that can create permanent internal straining action in the beam which is opposite to the existing straining action due to the applied service loads. The most benefits of using this system of strengthening are an elastic performance to higher loads, higher ultimate capacity, and reduction in deformation under the applied loads. Under service loads, bridge superstructures are subjected to cyclic loads which may cause a premature failure due to fatigue. Therefore, fatigue testing is critical to evaluate existing design methods of steel-concrete composite beams. ... This research presents static and fatigue tests on four steel-concrete composite specimens to evaluate the effect of externally post-tensioned tendons on the ultimate strength and fatigue behavior of composite beams. Fatigue tests are conducted to a million cycles under a four-point bending test. In addition, final static tests are performed on fatigued specimens to evaluate the residual strength of the strengthened specimen. A numerical model is described to predict the fatigue response of the composite beam by considering the fatigue damage in the concrete flange. The accuracy of the developed numerical model is validated using the existing test data. The static test results indicate that the external post-tensioning force improves the flexural behavior of the strengthened specimen by increasing the beam capacity and reducing the tensile stress in the bottom flange of the steel beam. The fatigue results demonstrate that the external post-tensioning significantly decreases the strains in the shear connectors, concrete flange, and steel beam. The tendons demonstrated an excellent fatigue performance, with no indication of distress at the anchors.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 316 ◽  
Author(s):  
Adel A. Al-Azzawi ◽  
Dalia Shakir ◽  
Noora Saad

In Iraq, the use of rubber waste material in concrete is an interesting topic due to its availability in large volumes. Researches of applications of rubber waste in concrete have been increased since 2003. Many studies carried out to investigate the performance of concrete using different ratios of rubber as a replacement to fine or coarse aggregate. In this research, rubber wastes from scrapped tires have been added as fiber to concrete mix with presence of 0.5% superplasticizer. The flexural behavior of concrete beams, mechanical properties of concrete and workability of concrete mixes have been studied. Rubber fibers ranging from (2-4) mm were added in percentages of 0.5% and 1%) of the cement weight. The results have demonstrated that the addition of rubber material as fibers in natural aggregate concrete enhances its ductility, compressive strength and tensile strength compared to the normal concrete. The effect of rubber fiber content is found to be significant on the behavior of tested beams. If the fiber content increased from 0 to 0.5% the cracking load increased by 60 % and ultimate load increased by 21%. For rubberized concrete, if the fiber content increased from 0.5 to 1.0%, the cracking load decreased 7% and ultimate load increased by 4%.   


Author(s):  
Indrayani Indrayani ◽  
Lina Flaviana Tilik ◽  
Djaka Suhirkam ◽  
Suhadi Suhadi ◽  
Muhammad Prawira Wardana ◽  
...  

Currently, innovation continues to be developed to replace cement with other materials so that the use of cement as a building material can be reduced. Utilization of coal waste (fly ash) is an alternative to subtitude cement. From previous studies, fly ash mixed with alkaline materials in the form of NaOH and Na2SiO3 in a ratio of 1:5 can produce geopolymer concrete. This geopolymer concrete research was continued by adding bendrat wire fibers into the geopolymer concrete mixture. The method used in testing the aggregate, testing the compressive strength of normal concrete K225, testing the flexural strength of normal concrete and geopolymer concrete refers to SNI. Another additional material that is mixed is bendrat wire fiber. The research was carried out in the form of making flexible beams of 10 cm x 10 cm x 50 cm with fiber variations of 0%, 0.5%, and 1,0% at the age of 14 and 28 days. The results of the flexural strength test of the BN beam at the age of 28 days can withstand loads than BG. The average flexural strength obtained with variations of BN, BN+SB 0.5% and BN+SB 1.0% respectively were 2.796 MPa, 3.113 MPa, and 3.879 MPa. The results of testing the average flexural strength of geopolymer concrete beams at 28 days, obtained variations of BG, BG+SB 0.5%, and BG+SB 1.0% respectively were 0 MPa, 0.055 MPa and 0.104 MPa. In addition, geopolymer concrete cannot be used as a beam and the addition of bendrat wire fiber to geopolymer concrete cannot withstand the tensile load on the concrete.


Author(s):  
C. Xu ◽  
B. Y. Zhang ◽  
Z. H. Hou

<p>The application of high performance concrete has been increasingly concerned in the negative flexural region of steel‐concrete continuous composite girder because of its favorable tensile performance. However, the unclear cyclic and ultimate performance of a high performance concrete composite girder results to the problems which hinder the further application. In this case, a series of fatigue negative bending tests on HPC composite girders and fatigue push‐out tests on stud connectors in HPC were executed. The test results showed that the fatigue slip in the HPC composite girder was smaller than the normal concrete composite girder, and the fatigue life of stud in HPC was longer than the one in normal concrete. Meanwhile, according to the comparison between the stud fatigue live evaluations and test results, the AASHTO‐based evaluations were comparatively with larger safety redundancy, and JSCE was close to the test results but had smaller safety redundancy.</p>


Sign in / Sign up

Export Citation Format

Share Document