Experimental Investigation on the Flexural Behaviour of Patched Reinforced Concrete with Unsaturated Polyester Resin Mortar

2015 ◽  
Vol 754-755 ◽  
pp. 457-462 ◽  
Author(s):  
Agus Supriyadi ◽  
Stefanus Adi Kristiawan ◽  
Sandy Raditya

This research is aimed to investigate the flexural behaviour of patched reinforced concrete beam with patching material made from unsaturated polyester resin mortar. The variable studied is the dimension of patching zone as compared to the control beam (without patching). Based on the load-deflection observation of the beam under a four-point bending loading, it is confirmed that the flexural behaviour of the patched reinforced concrete beam is similar to that of control beam at a loading up to about peak load. After this load the patched reinforced concrete beam tends to behave more ductile. The patched reinforced concrete beam show less cracking density compared to control concrete.

2017 ◽  
Vol 737 ◽  
pp. 441-447 ◽  
Author(s):  
Stefanus Kristiawan ◽  
Agus Supriyadi ◽  
Senot Sangadji ◽  
Hapsara Brian Wicaksono

Degradation of reinforced concrete (RC) element could lead to a reduction of its strength and serviceability. The degradation may be identified in the form of spalling of concrete cover. For the case of RC beam, spalling of concrete cover could occur at the web of the shear span due to corrosion of the web reinfocements. The shear strength of the damaged-RC beam possibly will become less conservative compared to the corresponding flexural strength with a risk of brittle failure. Patch repair could be a choice to recover the size and strength of the damaged-RC beam. This research investigates the shear failure of patched RC beam without web reinforcements with a particular interest to compare the shear failure behaviour of patched RC beam and normal RC beam. The patch repair material used in this research was unsaturated polyester resin (UPR) mortar. The results indicate that the initial diagonal cracks leading to shear failure of patched RC beam occur at a lower level of loading. However, the patched RC beam could carry a greater load before the diagonal crack propagates in length and width causing the beam to fail in shear.


2020 ◽  
Vol 23 (15) ◽  
pp. 3171-3184
Author(s):  
Ebrahim Emami ◽  
Ali Kheyroddin ◽  
Mohhamad Kazem Sharbatdar

Recently, the single haunch with specifications such as less invasive and architectural consistency, and easy to practice have been adopted as one of the considered retrofitting options for deficient reinforced concrete beam-column joints. In this article, by analytical evaluation, the influence parameters such as haunch to beam stiffness ratio, haunch inclination angles, and mounted position were investigated. Analytical equations were also proposed for haunch to beam stiffness ratio in terms of both shear interaction between haunch and beam-column members and reduction of joint shear demand. Moreover, five exterior beam-column joint sub-assemblies were fabricated afterwards four of those retrofitted by various cross-sectional area of single steel haunch. Then, all of these beam-column joints and remaining one (as-built joint) were experimentally subjected to cyclic loading. To validate the analytical results, the experimental responses in four limit states including first diagonal core crack in as-built joint, drift ratio 2%, the first diagonal core crack in all the joints, and ultimate state (peak load) were provided for comparison. Also, by definition of an index as vulnerability index in fraction ratio of available joint shear force to joint shear strength predicted by international codes, the obtained vulnerability index of experimental responses were compared to analytical results.


Sign in / Sign up

Export Citation Format

Share Document