Influence of Method Used for Calculating of Effective Properties on Stressed-Strain State of Composite Plate under Nonstationary Heating

2015 ◽  
Vol 756 ◽  
pp. 402-407 ◽  
Author(s):  
Yurii Aleksansdrovich Chumakov ◽  
Anna Georgievna Knyazeva

Numerical investigation of stressed-strain state composite plate is carried out for the conditions of one-axial loading and nonstationary heating. The state of plane stress was assumed. Various methods had been used for the calculation of effective properties: elastic constants and thermal expansion coefficient. The influence of the coupling between thermal and mechanical processes on temperature, stress and strains fields was investigated.

RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36779-36786 ◽  
Author(s):  
Ruru Hao ◽  
Xinyu Zhang ◽  
Jiaqian Qin ◽  
Suhong Zhang ◽  
Jinliang Ning ◽  
...  

The elastic constants, DOS, charge density distribution and the fundamental thermodynamic data such as the specific heat, thermal expansion coefficient and Debye temperature under different temperatures and pressures are theoretically determined.


1993 ◽  
Vol 73 (6) ◽  
pp. 2816-2820 ◽  
Author(s):  
J. F. Jongste ◽  
O. B. Loopstra ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

2016 ◽  
Vol 18 (15) ◽  
pp. 10320-10328 ◽  
Author(s):  
Z. M. Jendi ◽  
P. Servio ◽  
A. D. Rey

Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient of methane hydrate were calculated.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


2020 ◽  
Vol 59 (1) ◽  
pp. 523-537
Author(s):  
Chaturaphat Tharasana ◽  
Aniruj Wongaunjai ◽  
Puwitoo Sornsanee ◽  
Vichasharn Jitprarop ◽  
Nuchnapa Tangboriboon

AbstractIn general, the main compositions of porcelain and bone china composed of 54-65%wt silica (SiO2), 23-34% wt alumina (Al2O3) and 0.2-0.7%wt calcium oxide (CaO) suitable for preparation high quality ceramic products such as soft-hard porcelain products for teeth and bones, bioceramics, IC substrate and magneto-optoelectroceramics. The quality of ceramic hand mold is depended on raw material and its properties (pH, ionic strength, solid-liquid surface tension, particle size distribution, specific surface area, porosity, density, microstructure, weight ratio between solid and water, drying time, and firing temperatures). The suitable firing conditions for porcelain and bone china hand-mold preparation were firing at 1270°C for 10 h which resulted in superior working molds for making latex films from natural and synthetic rubber. The obtained fired porcelain hand molds at 1270°C for 10 h provided good chemical durability (10%NaOH, 5%HCl and 10%wtNaCl), low thermal expansion coefficient (5.8570 × 10−6 (°C−1)), good compressive (179.40 MPa) and good flexural strength (86 MPa). While thermal expansion coefficient, compressive and flexural strength of obtained fired bone china hand molds are equal to 6.9230 × 10−6 (°C−1), 128.40 and 73.70 MPa, respectively, good acid-base-salt resistance, a smooth mold surface, and easy hand mold fabrication. Both obtained porcelain and bone china hand molds are a low production cost, making them suitable for natural and synthetic rubber latex glove formation.


Sign in / Sign up

Export Citation Format

Share Document