Numerical Analysis of the Influence of the Parameter of Ductility of Reinforcing Steel on the Behaviour of Single-Span Reinforced Concrete Beams from the Viewpoint of Experimental Investigations

2015 ◽  
Vol 769 ◽  
pp. 139-144
Author(s):  
Mirosław Wieczorek

One of the fundamental elements applied in reinforced concrete structures are beams. Depending on the proportion of the dimensions and the way of imposing the load, two fundamental mechanisms of destruction are to be distinguished (brittle destruction caused by shearing the supporting zones or flexural destruction in the zone of the span). The present paper provides the results of the analysis of four reinforced concrete beams with the dimensions 4000×400×200 mm, reinforced with steel of varying ductility. The aim of this analysis was to reflect and to provide more detailed information about the phenomena observed in the course of laboratory investigations. The numerical models were constructed in compliance with the system ANSYS, applying volumetric elements Solid 65 and bars Link 8. In order to determine the relation σ-ε of the steel an isotropic model of strengthening according to Misses was implemented in the system ANSYS. The behaviour of concrete was represented making use of the material model Concrete. The parameters applied in the material models were obtained basing on laboratory tests of materials. The results of calculations have been quoted in the paper, as well as their comparison with the results of investigations carried out in the laboratory.

2019 ◽  
Vol 292 ◽  
pp. 140-145
Author(s):  
Pavlina Mateckova ◽  
Lucie Mynarzova ◽  
Oldrich Sucharda ◽  
Vlastimil Bilek

This paper deals with analysis of set of reinforced concrete beams. Loading experiments of these beams were carried out and the results were documented and published earlier. Experiments involve several variants of spans, cross-sections and reinforcement so that various modes of failure of reinforced concrete structures are achieved. This paper compares the resistance of particular beams defined according to valid standard Eurocode 2 with non-linear analysis using advanced spatial 3D numerical models Cementitious material model based on fracture mechanics implemented in ATENA software. This paper outlines the wider evaluation of failure mode of beam and comparison of different calculations of resistance of the cross-section.


2012 ◽  
Vol 535-537 ◽  
pp. 1803-1806
Author(s):  
Shun Bo Zhao ◽  
Peng Bing Hou ◽  
Fu Lai Qu

An experimental study was carried out to examine the non-uniform corrosion of plain steel bars in reinforced concrete beams partially placed in 5% sodium chloride solution under conditions of accelerated corrosion. 4 reinforced concrete beams with different concrete strength were made. The crack distributions of the beams due to pre-loads and expansion of corrosion product, and the sectional corrosion characteristics of plain steel bars are described in detail. The sectional area loss relating to mass loss and change along pure bending length of the beams are discussed. These can be used as the basis of test for further studies to build the numerical models of serviceability of corroded reinforced concrete beams.


2013 ◽  
Vol 577-578 ◽  
pp. 281-284 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky ◽  
David Mikolášek

This paper discusses the fracture-plastic material models for reinforced concrete and use of this model for modelling of reinforced concrete beams. Load-displacement relations and bearing capacity of reinforced concrete beams will be evaluated. A series of original (own) experiments - the beam and data from completed experiments - have been chosen for the numerical modelling. In case of the original experiments - reinforced concrete beams, stochastic modelling based on LHS (Latin Hypercube Sampling) will be carried out in order to estimate the total bearing capacity. The software used for the fracture-plastic model for reinforced concrete is ATENA.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 391
Author(s):  
Hadi Naser Ghadhban Al-Maliki ◽  
Ali Al-Balhawi ◽  
Ahmad Jabbar Hussain Alshimmeri ◽  
Binsheng Zhang

Reinforced concrete (RC) beams containing a longitudinal cavity have become an innovative development and advantage for economic purposes of light-weight members without largely affecting their resistance against the applied loads. This type of openings can also be used for maintenance purposes and usage space of communication lines, pipelines, etc. RC beams are primarily loaded in the plane of the members, which are two-dimensional in a plane stress state and the dominant structural behaviours include bending, shear, or combination of both. In the present study, six numerical models of RC beams with and without openings were simulated by using commercial finite element software ANSYS to evaluate the structural behaviours of those beam models under the partial uniformly distributed load. Different parameters were assessed, including opening dimensions and shear reinforcement ratios. The obtained numerical results were analysed and verified and were found very close to those obtained from the experimental investigations in the literature. The increase of shear reinforcement ratio could enhance the flexural and shear capacities of the RC beams, and the results also showed that some models sustained flexural failure while the others sustained failure of combined bending and shear.


2015 ◽  
Vol 769 ◽  
pp. 133-138
Author(s):  
Mirosław Wieczorek

In the time of exploitation of building structures frequently situations do occur, in which due to failures they are exposed to much higher loads than originally predicted. The subject matter of the performed investigations and a numerical analysis are models of four narrow reinforced concrete slabs with the dimensions 7140×500×190 mm. The paper presents the results of the numerical analysis, the aim of which was to reflect and to provide detailed information about phenomena occurring in the course of laboratory tests. Numerical models were constructed according to the system ANSYS, applying volumetric elements SOLID65 and bars LINK8. In order to determine the relation σ-ε of steel an isotropic model of strengthening in the system ANSYS was used, constructed by Misses. The behaviour of concrete was represented by the material model Concrete. The parameters applied in the material models had been obtained in laboratory tests of the material. The paper quotes the results of calculations compared with the results obtained in laboratory tests.


2017 ◽  
Vol 21 (4) ◽  
pp. 532-544
Author(s):  
MS Mohamed Ali

The strengthening of reinforced concrete members with prestressed fibre-reinforced polymer laminates has been investigated by researchers due to major improvements in member serviceability characteristics. Currently, analytical models generally employ mostly empirical procedures in predicting member behaviour, and as a result, the analytical results exhibit poor correlation to experimental investigations. In this article, an analytical model is developed using new and existing theoretical techniques to critically analyse strengthened reinforced concrete beams for a range of loading scenarios to generate moment–rotation and load–deflection relationships. The prestress level and the intermediate crack debonding strain of the prestressed fibre-reinforced polymer laminate with the inclusion of mechanical end anchorage were highlighted as key parameters within the model. The proposed model adopts closed-form solutions to allow for a wide range of beams with varying steel and fibre-reinforced polymer reinforcement ratios and dimensions. The model incorporates calibrated crack spacing theory to predict the crack width and spacing as well as the length of the cracked region in the beam. The models have good correlation with collected experimental data and thus can be used for the analysis of reinforced concrete beams strengthened with prestressed fibre-reinforced polymer, throughout all stages of loading from serviceability to failure.


2019 ◽  
Vol 5 (10) ◽  
pp. 2247-2259
Author(s):  
Eman Abbas ◽  
Alaa H. Al-Zuhairi

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams with minimum reinforcement was studied.  ABAQUS program was utilized for Finite Element (FE) modeling and analysis of the beams. On the other hand, mesoscale modeling of concrete constituents was executed with the aid of ABAQUS PYTHON language and programing using excel sheets. The concrete beams under flexure were experimentally investigated as well as by the numerical analysis. The comparison between experimental and numerical results showed that the mesoscale model gives a better indication for representing the concrete models in the numerical approach and a more appropriate result when compared with the experimental results.


2002 ◽  
Vol 8 (3) ◽  
pp. 164-168
Author(s):  
Juozas Valivonis

In many cases concrete structures with prestressed steel being sufficiently strong do not meet requirements for stiffness. It is possible to avoid steel prestressing in concrete structures by means of providing additional non-metallic reinforcement, which gives opportunity to increase stiffness of beams significantly. Experimental investigations of reinforced concrete beams with external non-metallic reinforcement were made. Method for calculation of deflection of beams with external non-metallic reinforcement is presented in this article. Theoretical calculations of deflections using the proposed method were performed. Sufficiently good agreement with experimental deflection values was obtained.


Sign in / Sign up

Export Citation Format

Share Document