scholarly journals Hydrophilic Indicates Surface Morphology Quality of TiO2/CdS Nanocomposite Film

2015 ◽  
Vol 773-774 ◽  
pp. 701-705
Author(s):  
Ali Kamel Mohsin ◽  
Noriah Bidin ◽  
Kadhim A. Aadim

Engineering and decoration on the surface of metal oxide semiconductor (TiO2) for increasing activity is challenging. Thus a novel method is introduced to determine surface morphology quality subsequently improving the photocatalytic behaviour. TiO2films are fabricated via laser deposition technique at various CdS thickness. Microstructural characterization and optical behaviours are characterized by felid emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). The hydrophilic property of TiO2/CdS nanocomposite film (NCF) is examined via contact angle measurements. The grain density is found linearly increased with the contact angle. A mutual relationship is revealed between hydrophilic property and crystallization with respect to the CdS thickness. Thus, surface morphology of nanocomposite quality is quantified based on the hydrophilic measurement

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3171
Author(s):  
AbdolAli Moghaddasi ◽  
Patrik Sobolčiak ◽  
Anton Popelka ◽  
Igor Krupa

Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, the contact angle measurements of various liquids in air, and the underwater contact angle of vegetable oil. The separation efficiency was evaluated by measuring the UV transmittance of stock solutions compared to the UV transmittance of the filtrate. Results: The MXene coating onto coPA mats led to changes in the permeability, hydrophilicity, and roughness of the membranes and enhanced the separation efficiency of the water/vegetable oil emulsions containing 10, 100, and 1000 ppm of sunflower vegetable oil. It was found that membranes were highly oleophobic (>124°) under water, unlike in air, where the membranes showed high oleophobicity (<5°). The separation efficiency of water/oil emulsions for both types of covered membranes reached over 99%, with a surface coverage of 3.2 mg/cm2 Ti3C2Tx (for ML-Ti3C2Tx) and 2.9 mg/cm2 (for SL-Ti3C2Tx). Conclusions: The separation efficiency was greater than 98% for membranes covered with 2.65 mg/cm2 of ML-Ti3C2Tx, whereas the separation efficiency for membranes containing 1.89 and 0.77 mg/cm2 was less than 90% for all studied emulsion concentrations.


2009 ◽  
Vol 610-613 ◽  
pp. 1273-1277 ◽  
Author(s):  
Li Ren ◽  
Lian Na Zhao ◽  
Shi Heng Yin ◽  
Ying Jun Wang ◽  
Hao Chen ◽  
...  

In order to improve the surface hydrophilicity and the resistance to protein deposition of fluorosilicone acrylate RGP (rigid gas permeable) contact lens, low temperature ammonia plasma treatment was used to modify the lens surface. The changes of surface structures and properties were characterized by contact angle analyzer, X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). Effects of exposure time and plasma generating power on surface properties of the RGP contact lens were investigated. The surface contact angle measurements showed a great improvement of hydrophilicity after plasma treatment. XPS analysis indicated that the oxygen content and the nitrogen content increased remarkably after ammonia plasma treatment. Furthermore, the content of the hydrophilic group O-C=O/N-C=O on the surface increased and the content of the hydrophobic group CF2 decreased after plasma treatment. AFM results showed that ammonia plasma could lead to surface etching.


2013 ◽  
Vol 583 ◽  
pp. 95-100 ◽  
Author(s):  
Alina Sionkowska ◽  
Katarzyna Lewandowska ◽  
A. Planecka ◽  
P. Szarszewska ◽  
K. Krasinska ◽  
...  

Blends of two polymer, namely chitosan with silk fibroin or partially hydrolysed polyacrylamide (HPAM) were prepared. The surface properties of chitosan/silk fibroin and chitosan/HPAM blended films were investigated using the technique of Atomic Force Microscopy (AFM) and by means of contact angle measurements allowing the calculation of surface free energy. Measurements of the contact angle for diiodomethane (D), and glycerol (G) on the surface of chitosan films and chitosan/silk fibroin films were made and surface free energy was calculated. It was found that chitosan/silk fibroin blend surface is enriched in high surface energy component i.e. silk fibroin. The surface roughness of chitosan, silk fibroin, HPAM, chitosan/silk fibroin and chitosan/HPAM blended films differs with the composition of the blend. Film-forming polymeric blends can be potentially used as biomaterials and cosmetic materials.


2016 ◽  
Vol 164 ◽  
pp. 599-604 ◽  
Author(s):  
Sara L. Schellbach ◽  
Sergio N. Monteiro ◽  
Jaroslaw W. Drelich

Cellulose ◽  
2021 ◽  
Author(s):  
Julia Auernhammer ◽  
Alena K. Bell ◽  
Marcus Schulze ◽  
Yue Du ◽  
Lukas Stühn ◽  
...  

Abstract Polymer coatings on cellulosic fibres are widely used to enhance the natural fibre properties by improving, for example, the hydrophobicity and wet strength. Here, we investigate the effects of a terpolymer P(S-co-MABP-co-PyMA) coating on cotton linters and eucalyptus fibres to improve the resistance of cellulose fibres against wetness. Coated and uncoated fibres were characterised by using scanning electron microscopy, contact angle measurements, Raman spectroscopy and atomic force microscopy with the objective of correlating macroscopic properties such as the hydrophobicity of the fleece with microscopic properties such as the coating distribution and local nanomechanics. The scanning electron and fluorescence microscopy results revealed the distribution of the coating on the paper fleeces and fibres. Contact angle measurements proved the hydrophobic character of the coated fleece, which was also confirmed by Raman spectroscopy measurements that investigated the water uptake in single fibres. The water uptake also induced a change in the local mechanical properties, as measured by atomic force microscopy. These results verify the basic functionality of the hydrophobic coating on fibres and paper fleeces but call into question the homogeneity of the coating. Graphic abstract


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 266 ◽  
Author(s):  
Wei Xiao ◽  
Hongbo Zhao ◽  
Wenqing Qin ◽  
Guanzhou Qiu ◽  
Jun Wang

In general, the flotation of minerals containing titanium needs to be activated by metal ions due to a lack of activating sites on their surface. However, the activating process is indirectly inferred due to the lack of direct experimental observation. In this study, atomic force microscopy (AFM) was used to observe the activation process. The results revealed that the hydroxyl compounds of Pb2+ ions were adsorbed on the rutile surface in the form of multiple molecular associates, rather than through single molecule adsorption. Styryl phosphoric acid (SPA) could largely be adsorbed on the activated rutile surface with a single and double layer rather than on the un-activated rutile surface. The results of contact angle measurements also revealed that the hydrophobicity of the activated rutile surface was significantly greater than that of the un-activated rutile surface after SPA was adsorbed. This study will be helpful to understanding the activating process from the microscale.


Sign in / Sign up

Export Citation Format

Share Document