ammonia plasma
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4301
Author(s):  
Alenka Vesel ◽  
Rok Zaplotnik ◽  
Gregor Primc ◽  
Miran Mozetič ◽  
Tadeja Katan ◽  
...  

The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.



Author(s):  
Weizhe Xiang ◽  
Jian Xu ◽  
Yiqiong Zhang ◽  
Hu Fu ◽  
Xiaobo Zhu ◽  
...  

Due to the pressing need for harnessing renewable energy, sizable energy storage technologies have become increasingly critical, among which vanadium redox flow batteries (VRFBs) are considered as one of the promising technologies. However, the lack of high-performance electrodes hinders the development of VRFBs. Herein, we report a new ammonia plasma-treated WO3@carbon felt as a high-performance electrode for VRFBs. The ammonia plasma introduces not only N-contained functional groups but also oxygen deficiencies on WO3, which provide additional active sites and improve the conductivity, leading to high catalysis for both cathodic and anodic vanadium redoxes. As a result, the energy efficiency and the power density of the VRFB increase from 78.9% to 86% and from 365.5 mWcm[Formula: see text] to 389.6 mWcm[Formula: see text], respectively. Moreover, the energy efficiency of composite electrodes remains stable for more than 300 cycles. This study provides a new strategy for designing cost-effective, environmentally friendly, and high-performance electrodes for future VRFBs.



PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257777
Author(s):  
Anuja Tripathi ◽  
Kenneth D. Harris ◽  
Anastasia L. Elias

Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10−8 M/s vs. 2.3⊆10−8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.



2021 ◽  
Vol 4 (9) ◽  
pp. 9639-9652 ◽  
Author(s):  
Biswajit S. De ◽  
Pawan Kumar ◽  
Neeraj Khare ◽  
Jing-Li Luo ◽  
Anastasia Elias ◽  
...  


2021 ◽  
Vol 12 (1) ◽  
pp. 181-185
Author(s):  
Yu. K. Ezhovskii ◽  
S. V. Mikhailovskii


2020 ◽  
Author(s):  
Petro Deminskyi ◽  
Chih-Wei Hsu ◽  
Babak Bakhit ◽  
Polla Rouf ◽  
Henrik Pedersen

Gallium nitride (GaN) is one of the most important semiconductor materials in modern electronics. While GaN films are routinely deposited by chemical vapor deposition at around 1000 °C, low-temperature routes for GaN deposition need to be better understood. Herein, we present an atomic layer deposition (ALD) process for GaN-based on triethyl gallium (TEG) and ammonia plasma and show that the process can be improved by adding a reactive pulse between the TEG and ammonia plasma, making it an ABC-type pulsed process. We show that the material quality of the deposited GaN is not affected by the B-pulse, but that the film growth per ALD cycle increase when a B-pulse is added. We suggest that this can be explained by removal of ethyl ligands from the surface by the B-pulse, enabling a more efficient nitridation by the ammonia plasma. We show that the B-pulsing can be used to enable GaN deposition with a thermal ammonia pulse, albeit of X-ray amorphous films.



2020 ◽  
Author(s):  
Petro Deminskyi ◽  
Chih-Wei Hsu ◽  
Babak Bakhit ◽  
Polla Rouf ◽  
Henrik Pedersen

Gallium nitride (GaN) is one of the most important semiconductor materials in modern electronics. While GaN films are routinely deposited by chemical vapor deposition at around 1000 °C, low-temperature routes for GaN deposition need to be better understood. Herein, we present an atomic layer deposition (ALD) process for GaN-based on triethyl gallium (TEG) and ammonia plasma and show that the process can be improved by adding a reactive pulse between the TEG and ammonia plasma, making it an ABC-type pulsed process. We show that the material quality of the deposited GaN is not affected by the B-pulse, but that the film growth per ALD cycle increase when a B-pulse is added. We suggest that this can be explained by removal of ethyl ligands from the surface by the B-pulse, enabling a more efficient nitridation by the ammonia plasma. We show that the B-pulsing can be used to enable GaN deposition with a thermal ammonia pulse, albeit of X-ray amorphous films.



2020 ◽  
Vol 46 (10) ◽  
pp. 996-999
Author(s):  
S. V. Bulyarskiy ◽  
V. S. Belov ◽  
E. P. Kitsyuk ◽  
A. V. Lakalin ◽  
M. S. Molodenskii ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document