Investigation of Biogas Production Using Organic Kitchen Wastes through Anaerobic Digestion

2015 ◽  
Vol 787 ◽  
pp. 97-101
Author(s):  
D. Thamilselvan ◽  
K. Arulkumar ◽  
M. Kannan

The present day’sresearch interests on bioenergy have been expanded rapidly due to oil crisis of 1980s. This bio energy should be available in locally and it’spurer than the fossil fuels. The field of bio energyis important for governments, scientists and business people in worldwide because of its available in nature and renewable resource. Todays the most important renewable energy is Biomass. The biological conversion of biomass to methane has become rapidly increasing in present days. All types of organic wastes can be converted to methane. In this study the installed plant is a sintex floating type biogas plant. The cubic capacity of plant is about 1000 liter. The pH range is maintained in the level of 6.8 to 7.5. The fermentation time of the anaerobic digestion for the efficient usage of gas as a fuel is about 30 days. Our biogas plant is used for all types of anaerobic respirating wastes such as cow dung manure, kitchen wastes etc.The input feed of kitchen waste is about 10 kg per day. The output of the biogas yield is about 0.714 m3/kg. The composition of biogas is 50% to 60% of methane and rather than remaining 30% to 40% CO2and small amount of water about 2% to 5%. The performance characteristics of biogas plant are studied in this paper. To evaluate the performance of biogas production and pH variation throughout this study.

2021 ◽  
Vol 10 (3) ◽  
pp. 623-633
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate abiogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste.The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy.Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysisand kinetics model based on the Gompertz equation was obtained for the variable with the highest yield, compared to 70% cow dung, 15% chicken manure, and 15% tofu liquid waste and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also conluded that the use of  tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


Author(s):  
Christian C. Opurum

This research paper aimed to evaluate the kinetics of anaerobic digestion (AD) of mixtures of cabbage waste (CW) with (Poultry dropping (PD) and Cow dung (CD). The study was conducted in 10L bio-digesters for 35 days under mesophilic conditions (25 - 35OC). Logistic function equation was used to simulate the experimental data to test for its goodness of fit and kinetic parameters namely: maximum biogas potential (Pb), the maximum biogas production rate (Rm), and the lag phase duration (λ) were estimated in each treatment. Chemical analysis showed that individual substrates possess characteristics that could support microbial activities in biogas production. The biogas yield in terms of added  volatile solids (VS) in decreasing order was as follows: 0.022, 0.018, 0.017, 0.014, 0.014 and 0.013 dm3/g VS for CW/CD 2:1, CW/PD3:1, CW/CD 1:1, CW alone, CW/PD1:1 and  CW/PD 2:1, respectively. A significant difference (P ≤ 0.05) in biogas yield was recorded in CW/CD 2:1 with 7.19 dm3 (53.29% increase). The kinetic parameters (Pb, Rm, and λ) for CW/CD 2:1 was 7.01 dm3, 1.58 dm3.d, and 2.29 days, respectively. This was followed by CW/PD 3:1 (5.84 dm3); with 24.92% increase in gas production and CW/CD 1:1 (5.42 dm3) with 15.53% increase relative to CW alone, 4.69 dm3. The digesters fed with CW/PD 1:1 and CW/PD 2:1 exhibited inhibitory effects on biogas production, with 7.51 and 2.05% decrease in gas yield, respectively. The logistic function model demonstrated a strong relationship between the experimental and model-predicted data. The high correlation coefficient (R2) ranging between 0.978 - 0.993 is evident. The model proved to be a useful tool in predicting anaerobic digestion and biogas production process.


2021 ◽  
Author(s):  
Samer Dahahda

The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Lignocellulosic biomass is the most abundant source of organic materials that can be utilized as an energy source. Anaerobic digestion has been proven to be an effective technology for converting organic material into energy products such as biogas. However, the nature of lignocellulosic materials hinders the ability of microorganisms in an anaerobic digestion process to degrade and convert organic material to biogas. Therefore, a pretreatment step is necessary to improve the degradability of lignocellulosic materials and achieve higher biogas yield. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews biological and thermal pretreatment as two main promising methods used to improve biogas production from lignocelluloses. A greater focus is given on enzymatic pretreatment which is one of the promising yet under-researched biological pretreatment method. The paper addresses challenges in degrading lignocellulosic materials and the current status of research to improve biogas yield from lignocelluloses through biological and thermal pretreatment.


Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2020 ◽  
Vol 170 ◽  
pp. 04002
Author(s):  
Shyamsing Thakur ◽  
Rahul Barjibhe

The methane yield and overall biogas generation reduce drastically in the winter and summer season. The Biogas plant operators reported better results with the co-digestion of the municipal solid waste (MSW) with cow dung in changing weather conditions. In this research work the quality and content of methane in biogas generated from biogas plant is improved by co-digestion of MSW, cow dung along with the urine with better carbon to nitrogen (C/N) Ration. We took number of experiment using different ratio of MSW and additives to improve biogas. Rigorous experimentations concluded that the co-digestion of the MSW, cowdung and urine in the proportion of (55:35:10) with equal amount water in a portable bio digester for anaerobic digestion results into better methane production with maintaining C/N ratio and reducing time duration for flammable biogas production.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Fikadu Kumsa Gemechu

Energy is one of the most important needy resources that found in the form of renewable and nonrenewable sources. The world demand for energy grows rapidly, and therefore, it is a time to look alternative and renewable energy resources to replace the rapidly depleting supply of fossil fuels. This study is aimed at analyzing the effects of temperature (°C), retention time (days), and potential of animal waste on the biogas production and its %CH4 compositions as responses to the factors of the study. The materials used in this study were cow dung, sheep, and pig manures. Anaerobic batch digesters (plastic water bottle) with a total volume of 2000 ml were used as digester (bioreactor) in this experiment. The glucose drip (tube) was fitted to the lids of each digester. Average temperature of digester was increased starting from the 6th to 10th day in cow dung and sheep manure. In this experiment, optimum time for best biogas yield was recorded. Analysis of the gas component shows the significant volume of methane component recorded in cow dung (66.9%) followed by sheep manure (62.1%). Cow dung was one of the best in producing biogas, while the sheep manure was medium, and pig manures are fewer producers as compared to others.


2021 ◽  
Vol 7 (3) ◽  
pp. 224-230
Author(s):  
Mtamabari Simeon Torbira ◽  
Ebigenibo Genuine Saturday

A modified fixed dome digester with stirring mechanism has been designed and constructed and used for the anaerobic digestion of cow dung slurry at 5%-7% Total solid (TS) concentration within the mesophylic temperature range. The quality of biogas gas produced was between 54%-69% methane (CH4) content. The Carbon to Nitrogen ratio (C: N) varied between 35:1 - 45:1. Total biogas yield obtained over the detention period was about 261 L. The maximum and minimum temperatures recorded over the 95 days period was 32oC and 25 oC respectively. The volume of biogas yield, Vb (m3) was observed to increase with the percentage total solid, PTS (%). The details of the design and construction of the biogas digester plant and its cost are reported. The performance of the plant was very satisfactory. Investigation into the anaerobic digestion revealed that cow dung has great potentials for generation of biogas.


2021 ◽  
Author(s):  
Venkateshkumar R ◽  
Shanmugam S ◽  
Veerappan AR

Abstract Cow dung is generally used as the feedstock material for the anaerobic digestion to produce biogas. A selection of alternate biomass material is needed to reduce the consumption or to eliminate the use of cow dung. Recently, cottonseed hull has been considered as the primary substrate to produce biogas. In this paper, the effect of biogas production on anaerobic co-digestion of cow dung with pre-treated cottonseed hull using different concentrations of sulfuric acid, hydrochloric acid, hydrogen peroxide, and acetic acid is investigated. Sodium hydroxide and calcium hydroxide are used at different concentrations for pre-treatment of cottonseed hull. The enhancement of biogas production from the batch reactors at mesophilic temperature (35 ± 2 ℃) is observed for mono- and co-digestion of cow dung with treated cottonseed hull. Maximum biogas yield is achieved for the treated cottonseed hull at 6% sodium hydroxide during mono digestion and at 6% calcium hydroxide during co-digestion.


2021 ◽  
Author(s):  
Samer Dahahda

The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Lignocellulosic biomass is the most abundant source of organic materials that can be utilized as an energy source. Anaerobic digestion has been proven to be an effective technology for converting organic material into energy products such as biogas. However, the nature of lignocellulosic materials hinders the ability of microorganisms in an anaerobic digestion process to degrade and convert organic material to biogas. Therefore, a pretreatment step is necessary to improve the degradability of lignocellulosic materials and achieve higher biogas yield. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews biological and thermal pretreatment as two main promising methods used to improve biogas production from lignocelluloses. A greater focus is given on enzymatic pretreatment which is one of the promising yet under-researched biological pretreatment method. The paper addresses challenges in degrading lignocellulosic materials and the current status of research to improve biogas yield from lignocelluloses through biological and thermal pretreatment.


Sign in / Sign up

Export Citation Format

Share Document