The Performance of a Heat Exchanger Designed for Cooling Electric Vehicle Car Battery System by Use Base Fluid and Nano-Fluid

2015 ◽  
Vol 793 ◽  
pp. 573-577 ◽  
Author(s):  
Nazih A. Bin-Abdun ◽  
Zuradzman Mohamad Razlan ◽  
A.B. Shahriman ◽  
D. Hazry ◽  
Khairunizam Wan ◽  
...  

This study examines the design of heat exchanger made of copper tube for cooling electric vehicle car battery system and the effects of base fluid and nanofluid (as coolants) channeling inside the heat exchanger to increase heat transfer between the compartment of the electric vehicle car and the heat exchanger and comparison between them. The nanofluid (CuO/pure water) was prepared by dispersing a nanoparticle (CuO) in base fluid (pure water). nanofluid (CuO/pure water) with a nominal diameter of 50 nm at volume concentrations (0.27 Vol. %) at batteries’ compartment temperature was used for these investigations. The analysis showed that secondary cooling system by means of nanofluid (CuO/pure water) has advantages in improving the thermal conductivity and heat transfer coefficient, better from base fluid (pure water) also in Nusselt number. This results work on reducing the electric power loss in the form of thermal energy from batteries. This led to increase in the efficiency of the electric vehicle car battery, hence also improved the performance of the EV car and battery lifetime.

Author(s):  
Sandesh S. Chougule ◽  
S. K. Sahu

In the present study, the forced convective heat transfer performance of two different nanofluids, namely, Al2O3-water and CNT-water has been studied experimentally in an automobile radiator. Four different concentrations of nanofluid in the range of 0.15–1 vol. % were prepared by the additions nanoparticles into the water as base fluid. The coolant flow rate is varied in the range of 2 l/min–5 l/min. Nanocoolants exhibit enormous change in the heat transfer compared with the pure water. The heat transfer performance of CNT-water nanofluid was found to be better than Al2O3-water nanocoolant. Furthermore, the Nusselt number is found to increase with the increase in the nanoparticle concentration and nanofluid velocity.


2018 ◽  
Vol 22 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Maria Anish ◽  
Balakrishnan Kanimozh

The heat produced in the nuclear reactor due to fission reaction must be kept in control or else it will damage the components in the reactor core. Nuclear plants are using water for the operation dissipation of heat. Instead, some chemical substances which have higher heat transfer coefficient and high thermal conductivity. This experiment aims to find out how efficiently a nanofluid can dissipate heat from the reactor vault. The most commonly used nanofluid is Al2O3 nanoparticle with water or ethylene as base fluid. The Al2O3 has good thermal property and it is easily available. In addition, it can be stabilized in various PH levels. The nanofluid is fed into the reactor?s coolant circuit. The various temperature distribution leads to different characteristic curve that occurs on various valve condition leading to a detailed study on how temperature distribution carries throughout the cooling circuit. As a combination of Al2O3 as a nanoparticle and therminol 55 as base fluid are used for the heat transfer process. The Al2O3 nanoparticle is mixed in therminol 55 at 0.05 vol.% concentration. Numerical analysis on the reactor vault model was carried out by using ABAQUS and the experimental results were compared with numerical results.


2014 ◽  
Vol 926-930 ◽  
pp. 802-805
Author(s):  
Jun Li Jia ◽  
Jin Hong Zhang ◽  
Guo Zhen Wang

Efficient secondary cooling water control level slab continuous casting process and quality are closely related. Casting solidification heat transfer model is the basis of process control and optimization, heat transfer model based on determining the secondary cooling system is the most widely used method for casting production process can be simulated. However, when considering the many factors affecting the production and input conditions change significantly, real-time and strain of this method is not guaranteed. Therefore, the artificial intelligence optimization algorithms such as genetic algorithms, neural networks, fuzzy controllers, introducing continuous casting secondary cooling water distribution and dynamics of optimal control methods, the rational allocation of caster secondary cooling water and dynamic control is important.


2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


2018 ◽  
Vol 26 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Man Bae Kim ◽  
Hong Gen Park ◽  
Chang Yong Park

An experimental research was performed to study the effect of time lapse on the change of water-Al2O3 nanofluid thermal conductivity and its convection heat transfer. The size of Al2O3 nanoparticle size was 20[Formula: see text]nm and 70[Formula: see text]nm, and initial volumetric concentration range was from 0.5% to 3%. A surfactant was added to the nanofluid and the change of thermal conductivity and convection heat transfer was also measured. The surfactant was Sodium Dodecyl Benzene Sulfonate (SDBS) and its mass fractions in the nanofluid were from 0.5% to 3.0%. Thermal conductivity of water and nanofluid was measured by the transient hot wire method. The accuracy of the measurement method was confirmed by the measurement error with 0.92% for distilled water at 20[Formula: see text]C. The thermal conductivity of the nanofluid without SDBS increased up to 11.3% and the enhancement decreased with time lapse. The reduction of thermal conductivity enhancement with the time lapse could be retarded by the addition of SDBS and its effect became higher with the increase of its mass fraction. The convection heat transfer characteristics of the nanofluid was measured in a small cooling system. Compared with pure water, nanofluid convection heat transfer could be enhanced but higher pressure drop also occurred. Compared with the convection heat transfer enhancement for the nanofluid without SDBS, the addition of SDBS decreased the enhancement at the initial stage of the experiment, but it could retard the reduction of convection heat transfer with time lapse.


Author(s):  
R. Saravanan ◽  
M. Karuppasamy ◽  
M. Chandrasekaran ◽  
V. Muthuraman

Heat transfer improvement is the main parameter in a heat exchanging equipment. Few methods to increase the coefficient of heat transfer is by creating the turbulence in heat exchanging elements and changing the heat transfer fluids. For current analysis of tube heat exchangers, tape inserts containing balls are implemented with nano-fluids in Carbon Nano Tubes (CNT) and ethylene glycol. 3D modelling and simulation of twisted tape heat exchanger with balls were carried out using Solidworks and ANSYS Workbench. Heat transfer rate, friction factor, temperature difference in the heat exchangers, Reynolds number and Nusselt number variations are assessed in this work.


2014 ◽  
Vol 663 ◽  
pp. 213-217 ◽  
Author(s):  
M.M. Rahman ◽  
T.J. Hua ◽  
H.Y. Rahman

As an effort in reducing the dependency on fossil fuel, efforts have been gathered to develop electric vehicle (EV) for the past decades. Technology of electric vehicles (EV) has been initialized in developed countries. However, the latter have different geographical and environmental conditions. Therefore, the system of EV cannot be utilized directly in this country. The controller of an EV functions by utilizing a potentiometer; supplying a certain amount of voltage from the batteries to the motor by driver’s force applied to the acceleration pedal. This action generates a huge amount of heat due to the internal resistance of the controller (e.g. potentiometer). In order for an EV to operate at optimum condition, temperature of the controller has to be maintained at a certain limit. Hence an effective cooling system is required to be designed to fulfill the above condition. The objective of this paper is to present the design of the cooling system for the controller of an electric vehicle (EV). Two types of cooling system namely liquid cooled plate heat exchanger and forced air cooled finned structure are designed and evaluated to assess the behavior of heat transfer as well as effects of heat transfer fluids and cooling system material towards the heat removal rate. Simulation using Computational Fluid Dynamics (CFD) for both cooling systems has been carried out to have better understanding. CFD results are compared with some of the analytical results. The findings revealed that both systems are suitable to be implemented as EV controller cooling system in Malaysian Environment.


Author(s):  
Hee Joon Lee ◽  
Han-Ok Kang ◽  
Tae-Ho Lee ◽  
Cheon-Tae Park

Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. To design vertical condensation heat exchanger in water pool, a thermal sizing program of condensation heat exchanger, TSCON (Thermal Sizing of CONdenser) was developed in KAERI (Korea Atomic Energy Research Institute). In this study, condensation heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without non-condensable gas (pure steam condensation). From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah correlation showed most satisfactory results for the heat transfer coefficient and mass flow rate in a heat exchanger in both subcooled and saturated water pools without the presence of non-condensable gas.


Author(s):  
Roman Vladimirovich Gorshkov

The paper considers one of the promising ways to influence the heat transfer in the cooling system of a cylinder-piston group, which is to improve physical properties of coolants. It has been stated that the development of nanotechnology has recently made it possible to significantly increase the thermal conductivity coefficient of base coolant - an aqueous solution of ethylene glycol due to its modification by high-conductive solid multigraphene nanoparticles. The resulting stable two-phase suspensions based on the base coolant and particles of the solid phase are called nanofluids. To evaluate the increase in heat transfer at the “wall-coolant” boundary and the decrease of temperature of this wall when applying nanofluid in the engine cooling system as compared to the base fluid, an experimental setup was developed for simulating the flow of coolant in the annular channel of the cooling cavity of the cylinder liner and the conditions determining the heat transfer in its cooling cavity. As a result of conducting a series of experiments under similar test conditions, a significant increase in the heat transfer coefficient was found at the boundary of the “liner wall-liquid” due to the use of nanofluids with highly heat-conducting multigraphene nanoparticles compared to the base fluid. This led to a decrease in the temperature of the cylinder liner. Reducing the temperature of the heat-loaded engine parts allows to increase the reliability of the promising and forced diesel engines, to increase the degree of boosting at the average effective pressure while maintaining the permissible temperature level of the parts of the cylinder-piston group. Intensification of heat transfer at the “wall-liquid” interface contributes to an increase in the thermal efficiency of various heat exchangers as part of an internal combustion engine associated with the main circuit of the cooling system.


Sign in / Sign up

Export Citation Format

Share Document