Comparison of Conventional and Dry Electrical Discharge Machining

2015 ◽  
Vol 794 ◽  
pp. 278-284 ◽  
Author(s):  
Tassilo Maria Schimmelpfennig ◽  
Ivan Perfilov ◽  
Jan Streckenbach ◽  
Eckart Uhlmann

For manufacturing of micro holes ElectricalDischarge Machining (EDM) can be used, which is well-established due toits thermal working principle that allows almost force free machining independent of the material’s mechanical properties. The importance of this production technology is increasing, especially for the machining of ceramic materials, which are required in many applications within the field of microtechnology. However, the production of precise micro holes with complex geometries and high aspect ratios is associated with a many challenges. Hightool electrode wear, low material removal rate and small gap widths are observed in the process. This paper presents an optimized dry EDM technology for the manufacturing of micro holes in Si3N4-TiNceramic. The experiments were carried out with different energy influencing process parameters for the spark discharge and flushing pressure, which were systematically evaluated by methods of statistical Design of Experiments. Subsequently dry EDM and conventional EDM micro drilling processes were compared and the differences between both processes were evaluated. The influences of liquid and gaseous dielectric are analyzed in terms of process stability and axis movements.

2014 ◽  
Vol 941-944 ◽  
pp. 2127-2133 ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

The ability to machine advanced ceramic materials such as ZrO2, SiC, and AlN is of high interest for various industries because of the extraordinary material properties that these ceramics possess. Once sintered, these ceramics are characterized with high mechanical strength, high thermal stability and high chemical inertness. Therefore it is extremely difficult to machine these ceramics with dimensions in few microns using traditional techniques. Electrical discharge machining (EDM) is an electro-thermal machining process used to structure conductive materials. By applying a conductive layer on top of the non-conductive material, the EDM process can also be used to machine the non-conductive material. This paper presents a study on the effect of tool polarity and tool rotation on the material removal rate and electrode wear ratio during the EDM process of non-conductive SiC, ZrO2 and AlN ceramics. The reasons for the variation in the material removal rates among the different ceramics are examined by comparing the material properties. Relatively lower value of flexural strength, fracture toughness and melting temperature is the reason for AlN ceramic to have the higher MRR than SiC and ZrO2 ceramics.


Author(s):  
Gianluca D’Urso ◽  
Michela Longo ◽  
Giancarlo Maccarini ◽  
Chiara Ravasio

Micro-Electrical Discharge Machining (μEDM) has become a widely accepted non-traditional material removal process for micro-manufacture of conductive materials considered difficult to be cut using traditional machining technologies. Moreover, EDM is an ideal process for obtaining burr-free micron-size apertures with high aspect ratios. Aim of this work was to investigate the feasibility of drilling micro holes on titanium using μ-EDM technology. Titanium plates having a thickness equal to 0.5 mm were taken into account and the holes were performed using a carbide electrode having a diameter equal to 0.3 mm. The Design Of Experiment (DOE) method was used for planning the experimental campaign and ANOVA techniques were applied to study the relationship between process parameters and final output. In particular, the most important process parameters such as peak current, pulse duration, frequency and electrode rotation speed were investigated as a function of material removal rate, wear rate and machining accuracy. Geometrical and dimensional analyses were carried out on micro-holes using both optical and scanning electron microscopes to evaluate both the over cut and the rate of taper.


Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


2013 ◽  
Vol 549 ◽  
pp. 503-510 ◽  
Author(s):  
Gianluca D'Urso ◽  
Giancarlo Maccarini ◽  
C. Merla

The recent miniaturization trend in manufacturing, has enhanced the production of new and highly sophisticated systems in various industrial fields. In recent years, machining of the so called difficult to cut materials has become an important issue in several sectors. Micro Electrical Discharge Machining (micro-EDM) thanks to its contactless nature, is one of the most important technologies for the machining of this type of materials and it can be considered as one of the most promising manufacturing technologies for the fabrication of micro components. One of the most relevant applications of micro-EDM is micro-drilling. Micro holes in fact, are widely used for example in micro-electromechanical systems (MEMS), serving as channels or nozzles to connect two micro-features, and in micro-mechanical components. The present study is about micro drilling of metal plates by means of micro-EDM technology. In particular, the aim of this work is to investigate the effects of the downsizing of the micro holes diameter on the drilling performances. The influence of the reduction of the diameters in terms of both process performances (e.g., tool wear, taper rate, diametrical overcut) and general quality of the holes was investigated. Steel plates having thickness equal to 0.8 mm were taken into account. The drilling process was carried out using a micro-EDM machine Sarix SX 200 with carbide electrodes having diameter equal to 300, 200, 100 and 50 μm. Since the standard electrodes adopted in this study had a diameter equal to 300 μm, a wire EDM unit was used to obtain the other electrodes. The relationship between the process parameters considered the most significant and the final output, was studied. Furthermore, the geometrical and dimensional properties of the micro-holes were analyzed using both optical and scanning electron microscopes. In particular, it is demonstrated that the diameter size has a significant influence on the final value of the diametrical overcut while peak current and frequency parameters have a negligible effect.


2021 ◽  
pp. 2150102
Author(s):  
MAYANK CHOUBEY ◽  
K. P. MAITY

The increasing trends towards miniaturized and lightweight components for various engineering and aerospace applications by unconventional machining the demand for micro-electrical discharge machining (EDM) have become increasingly wide. Micro-EDM is one of the most promising unconventional machining processes as compared to other unconventional machining due to its lower cost, ease of operation, and accuracy. This research explores the experimental investigation of micro-EDM operation on hard and difficult to machine material Inconel 718. The micro-holes were fabricated on an Inconel 718 workpiece with a copper electrode. The influence of input process parameters on material removal rate (MRR), machining time, and quality of the fabricated micro-holes were studied. Overcut and taperness of the fabricated micro-sized through holes were measured to address the accuracy of the fabricated micro-holes in micro-EDM operation. Experimental results reveal that the increase in current and voltage increases the MRR, and reduced machining time but at the cost of dimensional accuracy of the fabricated holes. The high value of current and voltage resulted in poor surface quality. The optimum machining condition that gives higher MRR with higher machining precision was obtained by experimenting while machining Inconel 718.


2012 ◽  
Vol 523-524 ◽  
pp. 328-331
Author(s):  
Kensei Kaneko ◽  
Ken Yamashita ◽  
Yasushi Fukuzawa

AlN ceramic materials have high thermal conductivity and electrical insulation, prompting consideration of their use as a semiconducting material. Although AlN should be machined with a high accuracy of form and dimension to achieve products and components with requisite precision, mechanical and other machining methods such as the micro blasting technology or laser method cannot be used because of the brittleness and high thermal conductivity of AIN. Recently, we have succeeded in machining many insulating ceramics by EDM with the assisting electrode method. We have already machined many insulating ceramic materials such as Si3N4, ZrO2 and Al2O3. However, inferior machining characteristics were obtained with AlN than with other materials. In this study, the effects of several electrical discharge conditions were examined to obtain better machining properties, such as high material removal rate and a low electrode wear ratio. It was found that machining time decreased with an increase in capacitance, while the electrode wear ratio increased. In addition, the machining hole profiles were straight along the depth direction, and the shape of holes was non-tapered


2014 ◽  
Vol 590 ◽  
pp. 244-248
Author(s):  
Jamkamon Kamonpong ◽  
Pichai Janmanee

This research aimed to study the machining efficiency of AISI P20 steel by Electrical Discharge Machining (EDM) using rod copper electrode to machining material by 50 mm depth of machining was mainly assessed from Materials Removal Rate (MRR) and Electrode Wear Ratio (EWR). From the experiment designed to use Taguchi technique of data analysis and suitable parameter prediction, the highest MRR was at on-time of 150 μs, off-time of 2 μs and electric current level was at 15 A or 0.25 A/mm2. Predicted value was at 19.2395 mm3/min which was equal to real experiment, showing Materials Removal Rate of 19.647 mm3/min (with error of 2.12 percent) .Moreover, it was found that gap would increase with the size of electrode and depth of machining caused by movement of particles removed from side surface of electrode, which cause micro sparks at the side of the material workpiece.


2020 ◽  
Vol 998 ◽  
pp. 55-60
Author(s):  
Jurapun Phimoolchat ◽  
Apiwat Muttamara

This paper focused on Grey relational analysis (GRA) to optimize EDM parameters through multi-objective optimization for Al2024 aluminum and electrode graphite ISO-63 was used as a cutting tool. The process parameters pulse on time, duty factor, pulse current and open voltage. Performance characteristics examined included material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Taguchi’s 27 experimental designs, often called an orthogonal array (OA), was utilized to ignore interaction and concentrate on main effect estimation. GRA was performed to optimize input parameters levels. Results were that MRR increased from 35.00 to 35.11 mm3/min, EWR decreased from 11.63 to 10.89 mm3/min, and SR decreased from 5.01 to 4.97 μm. Taguchi and GRA resulted in clear improvements in MRR, EWR, and SR.


Author(s):  
Omer Eyercioglu ◽  
Kursad Gov

This study presents an experimental investigation of small hole electrical discharge machining of Al-Mg-Ti alloys. A series of drilling operations were carried out for exploring the effect of magnesium content. Holes of 2 mm diameter and 15 mm depth were drilled using tubular single-hole rotary brass electrodes. The rates of material removal and electrode wear, surface roughness, overcut, average recast layer thickness, taper height and angle were studied for Al-Mg-Ti alloys contain 2%, 4%, 6%, 8%, 10%, 12%, and 14% Mg. The results show that the material removal rate is increasing with increasing Mg content while the rate of electrode wear is almost unchanged. Due to decreasing the melting temperature of the Al-Mg-Ti alloy with increasing Mg content, more metal melts and vaporizes during electrical discharge machining drilling. Therefore, more overcut and taper, thicker white layer, and rougher surfaces were measured for higher Mg content.


Author(s):  
Shivraj Yeole ◽  
Nagabhushana Ramesh Nunna ◽  
Balu Naik Banoth

Electrical Discharge Micro Drilling (EDMD) is considered as one of the most effective method for machining difficult to cut and hard materials like titanium alloy. However, selection of process parameters for achieving superior surface finish, higher machining rate and accuracy is a challenging task in drilling micro-holes. In this paper, an attempt is made to optimize micro-EDM process parameters for drilling micro holes on titanium grade 19 alloy. In order to verify the optimal micro-EDM process parameters settings, material removal rate (MRR), electrode wear rate (EWR) and over cut (OC) were chosen as the responses to be observed. Pulse on time, pulse off time, electrode diameter and current were selected as the governing process parameters for evaluation by Taguchi method. Nine micro holes of 300 μm, 400 μm and 500 μm were drilled using L9 orthogonal array (OA) design. Optimal combination of machining parameters were obtained through Signal-to-Noise (S/N) ratio analysis. It is seen that machining performances like material removal rate and overcut are affected by the peak current whereas electrode wear is affected by peak current and electrode diameter. Morphology of the micro holes has been studied through SEM micrographs of machined micro-hole.


Sign in / Sign up

Export Citation Format

Share Document