Effect of Ground Granulated Blast Furnace Slag on Compressive Strength of POFA Blended Concrete

2015 ◽  
Vol 802 ◽  
pp. 142-148
Author(s):  
M.N. Noor Azline ◽  
Farah Nora Aznieta Abd Aziz ◽  
Arafa Suleiman Juma

The article reports a laboratory experimental programme that investigated effect of ground granulated blast furnace (GGBS) on compressive strength of POFA ternary concrete. Compressive strength tests were performed at a range of cements combinations, including 100%PC, two POFA levels for binary concrete, 35% and 45%, and 15%GGBS inclusion for POFA ternary concrete. The compressive strength results were examined in comparison to PC only and equivalent POFA binary concretes for up to 28 days. Results show that the reduction in compressive strength is greater with the higher cement replacement level for all concretes particularly for POFA binary concretes. However, 15%GGBS in POFA blended concrete has a comparable compressive strength compared to PC concrete at both, 35% and 45%, cement replacement levels except for ternary concrete at 0.65 w/c. In addition, the compressive strength of ternary concrete is slightly higher compared to binary concrete for all concrete combinations. Although there is no significant noticeable influence on strength development, the presence of GGBS did not adverse the strength development of POFA blended concrete. Thus, it can be concluded that GGBS compensates the adverse effect of POFA at early strength development.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 442 ◽  
Author(s):  
Hyun-Min Yang ◽  
Seung-Jun Kwon ◽  
Nosang Vincent Myung ◽  
Jitendra Kumar Singh ◽  
Han-Seung Lee ◽  
...  

Ground granulated blast furnace slag (GGBFS) conventionally has been incorporated with ordinary Portland cement (OPC) owing to reduce the environmental load and enhance the engineering performance. Concrete with GGBFS shows different strength development of normal concrete, but sensitive, to exterior condition. Thus, a precise strength evaluation technique based on a quantitative model like full maturity model is required. Many studies have been performed on strength development of the concrete using equivalent age which is based on the apparent activation energy. In this process, it considers the effect of time and temperature simultaneously. However, the previous models on the apparent activation energy of concrete with mineral admixtures have limitation, and they have not considered the effect of temperature on strength development. In this paper, the apparent activation energy with GGBFS replacement ratio was calculated through several experiments and used to predict the compressive strength of GGBFS concrete. Concrete and mortar specimens with 0.6 water/binder ratio, and 0 to 60% GGBFS replacement were prepared. The apparent activation energy (Ea) was experimentally derived considering three different curing temperatures. Thermodynamic reactivity of GGBFS mixed concrete at different curing temperature was applied to evaluate the compressive strength model, and the experimental results were in good agreement with the model. The results show that when GGBFS replacement ratio was increased, there was a delay in compressive strength.


2015 ◽  
Vol 754-755 ◽  
pp. 395-399 ◽  
Author(s):  
Omer Abdalla Alawad ◽  
Abdulrahman Alhoziamy ◽  
Mohd Saleh Jaafar ◽  
Farah Noor Abdul Aziz ◽  
Abdulaziz Al-Negheimish

This paper presents the results of using ground dune sand (GDS) and ground granulated blast furnace slag (slag) as high volume cement replacement materials. In this study, plain and four blended mixtures were fabricated and cured under normal and autoclave conditions. For the blended mixtures, 40% GDS by weight of the total binder materials and different percentages of slag (15%, 30% and 45%) were incorporated as partial cement replacement materials. The effect of curing conditions (normal and autoclave) on the compressive strength of prepared mixtures was studied. The results showed that, for the autoclave cured mixture, up to 85% of cement can be replaced by GDS and slag without significant drop in the compressive strength. Microstructure analyses using scanning electron microscope (SEM) and X-ray diffraction analysis (XRD) were carried out to examine the microscale changes of the hydrated mixtures. The SEM revealed the formation of thin plate-like calcium silicate hydrate and compacted microstructure of autoclave cured mixture. XRD showed the elimination of calcium hydroxide and existence of residual crystalline silica of all blended mixtures.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Wonsuk Jung ◽  
Se-Jin Choi

This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS). GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT), peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.


2019 ◽  
Vol 11 (24) ◽  
pp. 7194 ◽  
Author(s):  
Chiu Chuen Onn ◽  
Kim Hung Mo ◽  
Mohammed K. H. Radwan ◽  
Wen Hong Liew ◽  
Chee Guan Ng ◽  
...  

Ground granulated blast furnace slag (GGBFS) is a by-product obtained from the iron making process and has suitable properties to be utilized as high volume cement replacement to produce sustainable concrete. This study focuses on investigating the influence of GGBFS replacement level (0%–70%) and water/binder ratio (0.45 and 0.65) on the performance of cement mortar blends. In order to characterize the engineering performance, the compressive strength of the mortar blends was evaluated. Whereas to ascertain the carbon footprint, environmental life cycle assessment was conducted. Besides the compressive strength and carbon footprint, the materials cost for each mortar blends was computed. Based on the compressive strength/carbon footprint ratio analysis, it was found that increased replacement level of GGBFS gave better performance while the cost efficiency analysis shows that suggested GGBFS replacement level of up to 50%. Overall, in considering the strength performance, carbon footprint and materials cost, the recommended GGBFS replacement level for cement blends is 50%. In addition, when the binder content is kept constant, mortar blends with lower water/binder ratio is preferable when considering the same parameters.


2020 ◽  
Vol 26 (4) ◽  
pp. 477-481
Author(s):  
Parthiban KATHIRVEL ◽  
Murali GUNASEKARAN ◽  
Sreenath SREEKUMARAN ◽  
Arathi KRISHNA

The study on the characteristics of geopolymer concrete (GPC) is of ultimate significance to instill assurance in builders and engineers. Abundant available literatures point towards the utilization of fly ash and ground granulated blast furnace slag (GGBFS) as source material in the production of GPC with little on other materials. India produces nearly 350 MMT of sugarcane for the production of sugar, which lies second only to Brazil in the annual production, the disposal of the bagasse creates an environmental issue needs to be effectively utilized. Hence, this work was intended to investigate the effect of utilizing sugarcane bagasse ash (SCBA) as a source material in the production of geopolymer mixes. The fresh (consistency, setting time, soundness and flow), hardened (density, compressive strength, expansion and pH) and microstructural properties (X-ray diffraction) of the tested mixes were asessed. The results infer that 20 % replacement level of GGBFS with SCBA produces superior compressive strength and all other results were within the permissible limits even at 40 % replacement level.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Author(s):  
Jean Noël Yankwa Djobo ◽  
Dietmar Stephan

AbstractThis work aimed to evaluate the role of the addition of blast furnace slag for the formation of reaction products and the strength development of volcanic ash-based phosphate geopolymer. Volcanic ash was replaced by 4 and 6 wt% of ground granulated blast furnace slag to accelerate the reaction kinetics. Then, the influence of boric acid for controlling the setting and kinetics reactions was also evaluated. The results demonstrated that the competition between the dissolution of boric acid and volcanic ash-slag particles is the main process controlling the setting and kinetics reaction. The addition of slag has significantly accelerated the initial and final setting times, whereas the addition of boric acid was beneficial for delaying the setting times. Consequently, it also enhanced the flowability of the paste. The compressive strength increased significantly with the addition of slag, and the optimum replaced rate was 4 wt% which resulted in 28 d strength of 27 MPa. Beyond that percentage, the strength was reduced because of the flash setting of the binder which does not allow a subsequent dissolution of the particles and their precipitation. The binders formed with the addition of slag and/or boric acid are beneficial for the improvement of the water stability of the volcanic ash-based phosphate geopolymer.


Sign in / Sign up

Export Citation Format

Share Document