Properties of Cement Mortar Consisting Raw Rice Husk

2015 ◽  
Vol 802 ◽  
pp. 267-271 ◽  
Author(s):  
Muhammad Munsif Ahmad ◽  
Fauziah Ahmad ◽  
Mastura Azmi ◽  
Mohd Zulham Affandi Mohd Zahid

Most of the rice husk is disposed with no further concern and this has caused waste disposal problems. Burning rice husk can cause health and environmental problem. Rice husk ash has been widely used for concrete technology application as additive in concrete mixture. However there is lack of study on the usage of raw rice husk. This paper presents the experimental on the properties of cement mortar consisting raw rice husk which focused on the porosity and density. Specimens were prepared by incorporating different percentage of rice husk with mortar. Summation of 10 mixes has been investigated to determine the compressive strength, density, porosity and water absorption. As the main purpose of the rice husk cement mortar is for drainage material, the main characteristics needed are porosity and lightweight. From the results, it is concluded that the higher percentage of rice husk used, will decreased the compressive strength and density and increased the porosity of rice husk cement mortar.

2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1524 ◽  
Author(s):  
Jing Liu ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Xiuli Wei ◽  
Dake Wu

When properly processed, rice husk ash (RHA) comprises a large amount of SiO2, which exhibits a high pozzolanic activity and acts as a good building filler. In this paper, the effects of rice husk ash content, acid pretreatment, and production regions on the compressive and flexural properties and water absorption of a cement paste were studied. The experimental results showed that the compressive strength of the rice husk ash was the highest with a 10% content level, which was about 16.22% higher than that of the control sample. The rice husk after acid pretreatment displayed a higher strength than that of the sample without the acid treatment, and the rice husk from the Inner Mongolia region indicated a higher strength than that from the Guangdong province. However, the flexural strength of each group was not significantly different from that of the blank control group. The trend observed for the water absorption was similar to that of the compressive strength. The variation in the RHA proportions had the greatest influence on the properties of the paste specimens, followed by the acid pretreatments of the rice husks. The production regions of the rice husks indicated the least influence.


2017 ◽  
Vol 751 ◽  
pp. 538-543 ◽  
Author(s):  
Pongsak Jittabut

This research was aimed to a present the physical and thermal properties of geopolymer pastes made of fly ash (FA) and bagasse ash (BA) with rice husk ash (RHA) containing at the doses of 0%, 2%, 4%, 6%, 8% and 10% by weight. The sodium hydroxide concentration of 15 molars, sodium silicate per sodium hydroxide by weight ratio of 2.0, the alkaline liquid per binder at the ratio of 0.60 and curing at ambient temperature were used at the to mix all mixtures to gether for 7 and 28 days. The properties analysis of the geopolymer pastes such as compressive strength, bulk density, water absorption, thermal conductivity, thermal diffusivity and thermal capacity were tested. The results were indicated that geopolymer pastes that containing rice husk ash 2% by weight for 28 days of curing gave the maximum compressive strength of 84.42 kg/cm2, low water absorption of 1.16 %, low bulk density of 2,065.71 kg/cm3, lower thermal conductivity of 1.1173 W/m.K, lower thermal diffusion of 6.643 µm2/s and lower thermal capacity of 1.6819 MJ/m3K, respectively. The utilization of waste from agriculture industry via geopolymer pastes for green building materials can be achieved. For this research, physical properties and thermal insulation of geopolymer pastes were siqnificantly improved.


Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2014 ◽  
Vol 875-877 ◽  
pp. 383-387 ◽  
Author(s):  
Teuku Ferdiansyah ◽  
Hashim Abdul Razak

The purpose of this paper is to discuss the influence of mineral additives i.e. metakaolin, silica fume, rice ash and fly ash incorporating with nanocarbontubes mortar composites. The effects on compressive strength at 28 days were also discussed and presented. Cement content of 500 kg/m3, water/cement ratio of 0.6 and aggregate/cement ratio of 2.75 were adopted for the mix propotion. 1%, 3% and 5% of nanocarbontubes in mortar were combined with 15% of mineral additives. The results show that mixtures of nanocarbontubes with 15% of metakaolin produce better strength compared to normal mortar. Meanwhile with addition of fly ash and rice husk ash the strength were decreased. The electrical resistance for all mixes at 28 days were also discussed and presented. The higher percentages of nanocarbon with addition of all mineral additives resulted in lower electrical resistance properties


2013 ◽  
Vol 795 ◽  
pp. 14-18 ◽  
Author(s):  
Y.C. Khoo ◽  
I. Johari ◽  
Zainal Arifin Ahmad

The aim of this study is to determine the influence of rice husk ash (RHA) on the engineering properties of fired-clay brick with the present of 10% sand. Temperature 1200°C is selected as the optimum temperature based on the preliminaries study. X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF), were carried out to determine the characteristic of raw materials used. Mechanical properties of rice husk ash-clay bricks are determined in terms of compressive strength, porosity and water absorption. The results shows that increase in RHA replacement percentage reduce the compressive strength and linear shrinkage of fired-clay bricks while the porosity and water absorption value increase. From the investigation, we can conclude that the optimum mixing ratio for fired-clay brick containing RHA is 15% because it complied with the minimum requirement for building material in term of strength and water absorption.


2016 ◽  
Vol 700 ◽  
pp. 173-182
Author(s):  
Muhammad Munsif Ahmad ◽  
Fauziah Ahmad ◽  
Mastura Azmi

Nowadays, interest in developing environmental friendly construction material was increased. As the result, many researches have been done to make use of waste material for engineering purposes. This paper present the results of laboratory experiments on the potential of raw rice husk (RH) cement mortar with addition of foam as drainage material. Mechanical properties which are compressive strength, density, water absorption and porosity have been investigated in order to identify the potential of this material to function as drainage material. Total of eight set of sample were tested to determine those properties. Aqueous foam generated from chemical based foaming agent was used in this study to enhance the drainage ability and also reducing the density of the cement based mixture. More over to simulate the real application at site, an infiltration model was developed to determine the drainage and infiltration characteristic of this material. The permeability of the sample used in the infiltration model has been tested using constant head test to verify the validity of the infiltration model. From the result obtained, it can be concluded that the compressive strength and density of sample decreases with percentage of raw rice husk used while the additional of foam has further reducing the compressive strength and density. Both water absorption and porosity showing the opposite trend compared to the compressive strength. This drainage material can be pre-designed between 1.60N/mm2 – 10.12 N/mm2 for compressive strength, 1392kg/m3 - 1841kg/m3 for density, 21% - 34% for water absorption and 31% - 42% for porosity. From the result of infiltration model, it was observed that this material having good drainage ability with the permeability of 15% foamed rice husk sample is 1.57x10-3.


Author(s):  
Ari Sri Wahyuni ◽  
Chundakus Habsya ◽  
Ernawati Sri Sunarsih

<p>The purposes of this research were to, (1) determine the influence of rice husk ash as smooth aggregate partial substitute and foam variation towards compressive strength, density, and absorption of lightweight foam concrete brick, (2) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the compressive strength which fulfilled SNI No. 03 – 0349 – 1989, (3) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the density lightweight concrete which fulfilled SNI No. 03 – 0349 – 1989, (4) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the absorption which fulfilled SNI No. 03 – 0349 – 1989, (5) produce course material supplement of concrete technology on the influence of using rice husk ash in lightweight foam concrete brick toward compressive strength, density, and absorption. <br />This research used experimental method and data analysis techniques used regression analysis. Variables in the study were (1) dependent variables: compressive strength, density, and absorption of lightweight foam concrete bricks, (2) independent variables: the substitute of smooth aggregate to rice husk ash with variation 0%, 25%, 35%, and 45% and foam variation 0,2 and 0,3 of concrete volume.<br />Based on the results of the study concluded that, (1) variation of rice husk ash and foam was strongly influence towards the compressive strength, density, and absorption of lightweight foam concrete bricks, (2) There was no percentage of rice husk ash and foam to achieve the compressive strength of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (3) All percentages of rice husk ash and foam variation produced the density value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (4) All percentages of rice husk ash and foam variation produced the absorption value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (5) the output course materials was a course materials supplement about the influence of the use rice husk ash as partly smooth agregate substitute of lightweight foam concrete brick to compressive strength, density, and absorption.</p><p>Keywords: rice husk ash, foam, lightweight foam concrete bricks.</p><span><span><br /></span></span>


Sign in / Sign up

Export Citation Format

Share Document