Mechanical Strength of Sago/Urea Formaldehyde Particleboard Affected by the Particle Size

2016 ◽  
Vol 833 ◽  
pp. 3-10
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

Every year, the sago processing industry in Sarawak-Mukah had generated huge amount of sago waste after the milling process and scientists have employ the waste into composite material. The fabrication and testing method are based on the Japanese A5908 Industrial Standard. Single-layer particleboards with targeted density of 600kg/m3 were produced from different sizes of sago particles. The mechanical properties of sago waste were investigated to study the feasibility of using this sample as a raw material in particleboard manufacturing. The results of the test demonstrate that samples with different sizes of particles have great influence on the mechanical properties such as Young’s Modulus, Tensile Strength and Impact Strength. The findings show that the performance of the board is affected by the different sizes of sago particles used in the experiment and had proved that sago plants can be used as an alternative raw material in the particleboard manufacturing industry.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Chen Chiang Tay ◽  
Sinin Hamdan ◽  
Mohd Shahril B. Osman

The sago processing industry in Mukah, Sarawak, had generated huge amount of sago waste after the milling process and scientists have employed the waste into composite material. In this work, sago residues were mixed with the Phenol Formaldehyde (PF) and Urea Formaldehyde (UF) for particleboard fabrication. The fabrication and testing methods are based on JIS A 5908 Standard. A single layer particleboard using sago particles was fabricated at targeted density of 600 kg/m3. Particles with weight fractions of 90%, 85%, and 80% with two different matrices were used in the fabrication. The results demonstrated that the samples with different weight fraction and matrix have great influence on the mechanical properties such as MOR, MOE, Young’s Modulus, tensile strength, impact strength, screw test, and internal bonding. The sago UF/PF particleboard only displays single stage decomposition. All the panels underwent physical tests which are water absorption and thickness swelling. The combination of sago particles with UF/PF can be utilized for general indoor application purposes such as furniture manufacturing. Sago particleboard made by UF/PF provided the advantages like optimized performance, minimized weight and volume, cost effectiveness, chemical resistance, and resistance to biodegradation.


2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

We live in a world where wood products are hard to ignore. The sheer flexibility in the number of applications where the wood is used means that it is one of the most sought resources in the world. The wood products industry faces challenges in promoting sustainable management of forest resources. Composite materials have advantage of having an optimized performance, minimized weight and volume, cost effectiveness, chemical resistance and resistance to biodegradation. The research in this paper is focused on sago particles with adhesive of low emission urea formaldehyde (UF) resin 51.6% solid content. The fabrication and testing method are based on JIS A 5908 standard. A single-layer particleboard by using the sago particles has been established at targeted density level 600kg/m3. Particles with weight fractions of 90%, 85%, 80%, 75% and 70% were used in the fabrication of sago composite boards. The results of the test demonstrated that the samples with different weight fraction and size have great influence on the mechanical properties like: MOR, screw test and internal bonding. The findings had demonstrated that the level of weight fraction and size had affects the performance of a board. At the next stage of the research the comparison between sago and wood particleboard will be carried out to identify the feasibility of these materials in the industrial application.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4613-4618 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

Being a fast growing plastic manufacturing industry, rotational molding has been using the linear polyethylenes extensively as the raw material. As these materials have shown insufficient mechanical properties for certain applications where strength and stiffness of the products are the main concerns, worldwide rotational molders have expressed a need for stronger and stiffer materials to be available for rotomolding. A possible attractive solution may be the recently developed microfibril reinforced composites (MFCs). Blends of linear medium density polyethylene/polyethylene terephthalate (LMDPE/PET) with an MFC structure are manufactured on a commercial-scale set-up and thereafter used in rotational molding. The samples are characterized morphologically and tested mechanically. The results obtained show that the MFC-concept has good application opportunities in the polymer processing including rotational molding.


BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 935-944
Author(s):  
Peng Luo ◽  
Chuanmin Yang ◽  
Mengyao Li ◽  
Yueqi Wang

Reducing particleboard thickness is one of the major approaches to decrease consumption volume of particleboard for furniture manufacture. This study employed an adhesive mixture of polymeric methane diphenyl diisocyanate (PMDI) and urea formaldehyde (UF) to produce single-layer medium density thin rice straw particleboard. The effects of various PMDI/UF formulations as well as board density on mechanical properties and water resistance of rice straw particleboard were studied. The results indicated that the mechanical properties and water resistance of the thin rice straw particleboard were appreciably affected by resin formulation. The panels bonded with PMDI/UF adhesive mixtures had mechanical properties and water resistance far superior to those bonded with UF. Higher PMDI content levels in resin mixtures led to improved mechanical properties and water resistance. Density influenced mechanical properties and water resistance of the thin rice straw particleboard. Increasing the density of the panel could upgrade the mechanical properties of the thin rice straw particleboard. The experimental outcomes showed that PMDI/UF resin systems had potential to substitute for pure PMDI resin in producing thin rice straw particleboard, which could effectively lower manufacturing cost and bring economic efficiencies due to reduced amount of pricey PMDI.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1462
Author(s):  
Ján Iždinský ◽  
Zuzana Vidholdová ◽  
Ladislav Reinprecht

In recent years, the production and consumption of thermally modified wood (TMW) has been increasing. Offcuts and other waste generated during TMWs processing into products, as well as already disposed products based on TMWs can be an input recycled raw material for production of particleboards (PBs). In a laboratory, 16 mm thick 3-layer PBs bonded with urea-formaldehyde (UF) resin were produced at 5.8 MPa, 240 °C and 8 s pressing factor. In PBs, the particles from fresh spruce wood and mixed particles from offcuts of pine, beech, and ash TMWs were combined in weight ratios of 100:0, 80:20, 50:50 and 0:100. Thickness swelling (TS) and water absorption (WA) of PBs decreased with increased portion of TMW particles, i.e., TS after 24 h maximally about 72.3% and WA after 24 h maximally about 64%. However, mechanical properties of PBs worsened proportionally with a higher content of recycled TMW—apparently, the modulus of rupture (MOR) up to 55.5% and internal bond (IB) up to 46.2%, while negative effect of TMW particles on the modulus of elasticity (MOE) was milder. Decay resistance of PBs to the brown-rot fungus Serpula lacrymans (Schumacher ex Fries) S.F.Gray increased if they contained TMW particles, maximally about 45%, while the mould resistance of PBs containing TMW particles improved only in the first days of test. In summary, the recycled TMW particles can improve the decay and water resistance of PBs exposed to higher humidity environment. However, worsening of their mechanical properties could appear, as well.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Wu ◽  
Yajing Wang ◽  
Feng Yang

In this paper, poplar was used as raw material, sodium chlorite was used to delignify it in acidic environment, and then epoxy resin was vacuum impregnated in the delignified wood template to prepare transparent wood. Moreover, in order to imitate the lamination method of plywood, the multilayer transparent wood was prepared by means of staggered vertical lamination. The purpose of this paper is to study the physical and chemical properties of multilayer transparent wood, and to explore the application potential of multilayer transparent wood as a new material by comparing with single layer transparent wood with the same thickness. The weight of wood components in the transparent wood prepared in this experiment accounts for about 30–45% of the weight of composite materials. Scanning electron microscopy (SEM) measurements, Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) characterization, weight gain measurements, UV transmittance measurements, color difference measurements, water contact angle measurements and mechanical properties measurements were used to study. The results showed that as the thickness of the transparent wood increased, the cracks between the resin and the wood cell wall increased, and the interface showed an uneven state. In the case of the same thickness, the multilayer transparent wood was made by laminating transparent wood sheets, with fewer internal cracks and smooth interfaces. Its light transmittance is better than single layer transparent wood. Moreover, compared with single layer transparent wood with the same thickness, the lightness of multilayer transparent wood decreased, and tended to yellow and red. Due to the removal of lignin, the tensile strength of transparent wood decreased during the preparation process. However, it can be seen from the mechanical strength test that the tensile strength of multilayer transparent wood is much higher than that of single layer transparent wood. To a certain extent, multilayer transparent wood can improve the mechanical strength of transparent wood. To conclude, multilayer transparent wood is a kind of natural transparent material with large thickness, good light transmission and excellent mechanical properties, and it has a good development prospect.


Author(s):  
Shanker Lal Meghwar ◽  
Ghous Bux Khaskheli ◽  
Aneel Kumar

The construction industry is the largest manufacturing industry, which produces concrete and other related materials for construction of infrastructure around the world, after the food production industry. This industry requires a lot of natural resources like aggregates, limestone etc. to produce finished product such as concrete and cement. These natural resources are limited and have to deplete one day, so alternate to these resources are required. On the other hand, this industry produces a large amount of waste material that creates environmental pollution. Thus, recycling the waste as potential raw material and to produce a usable product is the need of present era for sustainable construction. This study presents the quantitative analysis of HSH (Human Scalp Hair) as fibers in cement concrete. This study aims to investigate the behaviour of concrete in terms of their mechanical properties when HSH are used as fibers. A detailed investigation on two types of concrete specimens i.e. cylindrical (150 mm diameter and 300 mm height) and prism (150 mm depth, width and 600 mm length) made with a different proportion of HSH as fibers and concrete mix ratios, was carried out. In this study, various proportions of HSH added in concrete that includes 0%, 1%, 2% and 3% by weight of OPC (Ordinary Portland Cement). All specimens were cast at two concrete mix ratios i.e. 1:2:4 and 1:1.5:3 with 0.50 W/C (Water-Cement Ratio). Moreover, specimens were tested in UTM (Universal Testing Machine) at 28 days curing age, for splitting tensile strength and flexural strength of concrete. It was observed from the experimental analysis that there is an improvement in mechanical properties of concrete at specific percentage of HSH and reduction of workability and density with increasing percentages of HSH.


2016 ◽  
Vol 51 (3) ◽  
pp. 239-245 ◽  
Author(s):  
E Ahmed ◽  
AK Das ◽  
MO Hannan ◽  
MI Shams

This study aimed to find out the feasibility of coir pith as a raw material for particleboard production. Considering particle size, an attempt was taken to produce resin bonded coir pith particleboard and binder-less coir pith particleboard as well. The physical and mechanical properties of the board were examined. The particleboard made from medium size particle showed the best performance in aspect of properties. The particleboards made with 16% Melamine Urea Formaldehyde (MUF) had better product quality than binder-less coir pith board. The MOR, MOE, TS and IB were respectively 24.65, 2398, 22.55 and 1.52 N/mm2. Coir pith board may be a sustainable, cheap and durable building and packaging materials and timber substitute.Bangladesh J. Sci. Ind. Res. 51(3), 239-245, 2016


Nativa ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Talita Baldin ◽  
Maiara Talgatti ◽  
Amanda Grassamann da Silveira ◽  
Bruna Gabrieli Resner ◽  
Elio José Santini

O objetivo do presente trabalho foi avaliar o potencial de uso de partículas de resíduos de embalagens cartonadas e partículas de Eucalyptus grandis para a fabricação de compósitos, colados com adesivo à base de ureia-formaldeído. Foram utilizadas cinco diferentes proporções de madeira de E. grandis e embalagens cartonadas. As partículas de madeira e embalagens cartonadas foram produzidas em laboratório. A avaliação da qualidade dos compósitos envolveu a caracterização da geometria das partículas, das propriedades físicas: massa específica básica, teor de umidade de equilíbrio, absorção de água e inchamento em espessura após 2 e 24 horas de imersão em água e das propriedades mecânicas: flexão estática (MOE e MOR), resistência ao arrancamento de parafuso, ligação interna e dureza Janka. A incorporação de partículas de embalagens cartonadas proporcionou uma melhoria nas propriedades físicas em relação aos compósitos puros de madeira. Já para as propriedades mecânicas, compósitos com até 50% de embalagens cartonadas obtiveram melhores resultados, no entanto, a incorporação a partir de 75% ocasionou decadência nessas propriedades. Compósitos de madeira de E. grandis e embalagens cartonadas apresentaram potencial para utilização em ambientes internos e podem ser uma alternativa para a produção de compósitos sustentáveis e de boa qualidade.Palavra-chave: materiais sustentáveis, propriedades físicas e mecânicas, ureia-formaldeído. CARTONBOARD PACKAGING AS A RAW MATERIAL IN THE MANUFACTURE OF COMPOSITES ABSTRACT:The aim of this study was to evaluate the potential waste particles use of carton packaging and particles of E. grandis for the manufacture of particle boards, bonded with urea-formaldehyde-based adhesive. Five different proportions of E. grandis wood and cartons have been used. The wood particles and cartons were produced in the laboratory. The quality assessment panels involved characterizing the geometry of the particles, the physical properties: specific gravity, equilibrium moisture content, water absorption and thickness swelling after 2 and 24 hours of immersion in water and mechanical properties: flexural static (MOR and MOE), resistance to screw pullout, internal bond and Janka hardness. The incorporation of particulate cartons provided an improvement in physical properties relative to pure wood panels. As for the mechanical properties, panels of up to 50 % of cartons obtained best results, however, incorporating from 75 % decay caused these properties. The wood particleboard of E. grandis and cartons showed potential for use indoors and become an alternative for producing sustainable panels and of good quality.Keywords: sustainable materials, physical-mechanical properties; urea-formaldehyde. DOI:


2019 ◽  
Vol 112 ◽  
pp. 03009
Author(s):  
Anişoara Păun ◽  
Gheorghe Stroescu ◽  
Dumitru Milea ◽  
Mihai Olan ◽  
Mariana Epure

Obtaining quality fodder that meets the requirements of fodder receipts makes necessary the use of components that have to respect certain dimensions. The milled products must respect the granulation imposed by the receipt because they are very well assimilated by animals and the homogenization process is also very good. The milling process is a complex one, influenced by a number of factors that depend on the technical and constructive solution of the milling chamber and on the physical and mechanical properties of the processed raw material (seeds). In the hammer mills with open chambers and sieve surface up to 180 degrees, the presence of concaves (grooved plates) within the milling chamber is a must because it will lead to the acceleration of the seed milling process and implicitly to increase the productivity and reduce electricity consumption. The paper follows the theoretical and experimental presentation of an open chamber mill that is provided with these grooved plates.


Sign in / Sign up

Export Citation Format

Share Document