Finite Element Simulation for Nonlinear Finite Element Analysis of FRP Strengthened RC Beams with Bond-Slip Effect

2016 ◽  
Vol 846 ◽  
pp. 440-445
Author(s):  
Prabin Pathak ◽  
Yi Xia Zhang

A new simple, efficient and accurate finite element model denoted as FEM-B is developed for the analysis of structural behavior of FRP strengthened RC beams with bond-slip effect. Geometric nonlinearity and material nonlinear properties of concrete and steel rebar are accounted for this model. Concrete, steel, FRP and adhesive are modelled as Solid 65, Link 180, Shell181 and Solid 45 respectively. Concrete is modelled using Nitereka and Neal’s model for compression, isotropic and linear elastic model before cracking for tension and strength gradually reduces to zero after cracking, whereas steel is assumed to be elastic perfectly plastic material. The material of FRP is considered to be linearly elastic until rupture, and adhesive is assumed to be linearly elastic. The bond slip between concrete, adhesive and FRP is based on the bilinear law, which is modelled using spring element Combin 39.The developed new finite element model FEM-B is validated against experimental results, and demonstrates to be effective for the structural analysis of FRP strengthened RC beams.

2017 ◽  
Vol 14 (03) ◽  
pp. 1750032 ◽  
Author(s):  
Prabin Pathak ◽  
Y. X. Zhang ◽  
Xiaodan Teng

This paper investigates the structural behavior of fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beams by developing a new simple, efficient and accurate finite element model (FEM-B). In addition to the FRP, concrete and steel rebars, the adhesive and stirrups which have been generally ignored in the reported models from literatures are considered in the new models. At first, a finite element model (FEM-P) is developed assuming perfect bond between concrete, FRP and adhesive interfaces. Then the FEM-P model is expanded to form the FEM-B model by including the bond-slip effect between concrete, FRP and adhesive interfaces. The developed new finite element models (FEM-B and FEM-P) are validated against experimental results and demonstrate to be effective for the structural analysis of FRP strengthened RC beams. Furthermore, parametric studies are carried out to learn the effects of types and thickness of FRP on the structural behavior of FRP strengthened RC beams based on the FEM-B model. The research findings are summarized finally.


Author(s):  
Prabin Pathak ◽  
Y. X. Zhang

A simple, accurate and efficient finite element model is developed in ANSYS for numerical modelling of the nonlinear structural behavior of FRP strengthened RC beams under static loading in this paper. Geometric nonlinearity and material non-linear properties of concrete and steel rebar are accounted for this model. Concrete and steel reinforcement are modelled using Solid 65 element and Link 180 element, and FRP and adhesive are modelled using Shell 181element and Solid 45 element. Concrete is modelled using Nitereka and Neal’s model for compression, and isotropic and linear elastic model before cracking with strength gradually reducing to zero after cracking for tension. For steel reinforcement, the elastic perfectly plastic material model is used. FRPs are assumed to be linearly elastic until rupture and epoxy is assumed to be linearly elastic. The new FE model is validated by comparing the computed results with those obtained from experimental studies.


Author(s):  
Suleyman Nazif Orhan ◽  
Mehmet Hamit Ozyazicioglu

The main purpose of this study is to develop a validated three-dimensional finite element model of sternum closure techniques. For this aim, the finite element method analysis results of three closure methods were compared with experimental test results. Also, three more closure techniques are simulated numerically to study the effect of the number of wires used in the manubrium and xiphoid regions. A three-dimensional model of polyurethane sternum foam was created based on computed tomography images. Six different closure techniques using steel wire, steel bands and ZipFix bands were modeled on the sternum and transferred into a three-dimensional finite element model. The sternum was modeled as an isotropic bilinear-elasto-plastic material, and nonlinear contact conditions were applied. The models were analyzed under lateral distraction loading, and load-displacement curves were obtained from displacements at the incision line. Allowable loads and stiffness values of the methods were evaluated from these curves. The results showed the importance of the including material as well as geometric nonlinearities in the simulations to obtain realistic results from the numerical analyses. Also, the analyses showed that closures that include steel or ZipFix bands are superior to conventional wiring, and addition of a single wire at the manubrium and xiphoid regions significantly improved the efficiency of the closure techniques.


2012 ◽  
Vol 204-208 ◽  
pp. 1194-1199 ◽  
Author(s):  
Chao Fei Wang ◽  
Wei Rong Lv ◽  
Wen Luo

Effective simulation and analysis about wind turbine foundation simplified model experiment were conducted by using general finite element analysis (FEA) program ANSYS. Nonlinear finite element model with surface-to-surface contact pair was built to study the strain distribution of the steel interface and slip between steel and concrete. Relevant strain and spreading length curves under the load of every class were obtained. The numerical simulation results were in good agreement with the experimental results. And proper parameters of bond-slip relationship for steel and concrete in wind turbine foundation were confirmed. The finite element model established and analysis results can provide a theoretical reference for later research, and have significant value for optimal design of wind turbine foundation.


2011 ◽  
Vol 101-102 ◽  
pp. 329-332
Author(s):  
Fu Lai Qu ◽  
Shun Bo Zhao ◽  
Zhi Mei Zhou ◽  
Baoan Yuan

Reinforcement and concrete can work together to bear load in reinforced concrete structures, one of the main reasons is the relatively prefect bond between reinforcement and concrete. When steel reinforcement corrodes, the bond strength decreases and leads to the degradation of the reinforced concrete members. This paper built a finite element model by selecting appropriate stress-strain relationship of concrete and reinforcement, bond-slip relationship between concrete and corroded steel bars. The flexural behavior of corroded reinforced concrete lock-walls was analyzed by nonlinear finite element method. The calculated results were compared with the test results to verify the reliability of the finite element model. Finally, the influence of corrosion level of steel reinforcement and concrete strength on the normal section bearing capacity of lock-walls were discussed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document