Human Upper Limb Experimental Analysis for Complex Motions Used in Robotics

2018 ◽  
Vol 880 ◽  
pp. 136-141
Author(s):  
Mihnea Marin ◽  
Dorin Popescu ◽  
Ligia Rusu ◽  
Petre Cristian Copilusi

In this paper an experimental research was performed in case of a human complex motion. The research aim was to evaluate the joint trajectories and angular variations of a human upper limb. Thus an experimental motion analysis was performed, by using a modern equipment called VICON Equipment and the interest joints are: shoulder, elbow and wrist. The experimental activity was developed on a human subject when perform a complex motion from baseball sport. The obtained results will be useful for the temporal recovery of the athletes’ complex motions after a severe injury or to reshape the upper arm behavior when strikes the ball in case of baseball athletes.

2016 ◽  
Vol 823 ◽  
pp. 119-124
Author(s):  
Mihnea Marin ◽  
Petre Cristian Copilusi ◽  
Ligia Rusu

In this paper an experimental research was performed in case of a human complex motion. The research aim was to evaluate the joint trajectories and angular variations of the main human locomotion system. Thus an experimental motion analysis was performed, by using two modern equipments in parallel, one called VICON Equipment and the other called CONTEMPLAS. The experimental activity was developed on a human subject when perform a complex motion for hitting a ball. The obtained results will be useful for the improvement of the athletes’ complex motions on sports such as football in the way of conserving the energy or to reshape the foot behavior when strikes the ball.


2021 ◽  
Vol 42 ◽  
pp. 122-127
Author(s):  
Cristian Copilusi ◽  
Ionut Geonea ◽  
Alexandru Margine ◽  
Adrian Rosca

This research addresses attention to human upper limb experimental analysis during feeding process aiding disabled persons. The research core is focused on the experimental process of obtaining the angular amplitudes and trajectories developed by the human upper arm during feeding process. The research originality consists on the obtained results which can be used in further researches for command and control of robotic assisting devices.


2013 ◽  
Vol 325-326 ◽  
pp. 1062-1066 ◽  
Author(s):  
Petre Cristian Copilusi ◽  
Valentin Grecu ◽  
Nicolae Dumitru

In this paper a human upper limb robotic system is analyzed through an experimental study. The experimental analysis aim is to validate this robotic system type in order to use it in some kinetotherapy programs for the human upper limb recovery. The robotic system experimental research was performed by using special equipment called CONTEMPLAS which enables to evaluate angular variations in 3D environment. The equipment used in this research has two high-speed cameras which can record and establish the angular variations developed at the robotic system joints level. This paper consists of three main parts. In the first part there is an actual study of the robotic systems specially designed for the human upper limb rehabilitation, where the robotic system proposed for this experimental research is described. The second part includes some literature aspects regarding the movements developed by the human upper limb, and in the third part the experimental research is described in detail.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Children ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Ja Young Choi ◽  
Dong-Wook Rha ◽  
Seon Ah Kim ◽  
Eun Sook Park

The thumb-in-palm (TIP) pattern is one of the most common upper limb deformities in cerebral palsy (CP). This study was designed to investigate the effect of the dynamic TIP pattern on upper limb function in children with spastic CP. This prospective observational study included a total of 106 children with CP with dynamic TIP. The House TIP classification while grasping small or large objects, Melbourne Assessment of Unilateral Upper Limb Function (MUUL), Shriners Hospital Upper Extremity Evaluation (SHUEE), Zancolli classification for wrist–finger flexor deformity, and degree of swan neck deformity were assessed. Type I was the most common and highest functioning House TIP classification type. However, there were no significant differences in upper arm function between types II, III, and IV. The three components of the SHUEE showed stronger association with MUUL than House TIP and Zancolli classifications. After multivariable analysis, functional use of the wrist–finger and the thumb played a more significant role than the dynamic alignment of the thumb. In conclusion, the House TIP classification is useful to describe the TIP pattern. The SHUEE thumb assessment is a useful tool for reflecting upper arm function. The upper arm function was related more with the associated wrist flexor deformity than dynamic TIP.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.


Author(s):  
Zhi-Qiang Zhang ◽  
Lian-Ying Ji ◽  
Zhi-Pei Huang ◽  
Jian-Kang Wu

Author(s):  
Giuseppe Averta ◽  
Cosimo Della Santina ◽  
Edoardo Battaglia ◽  
Federica Felici ◽  
Matteo Bianchi ◽  
...  

2008 ◽  
Vol 24 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Yong “Tai” Wang ◽  
Konstantinos Dino Vrongistinos ◽  
Dali Xu

The purposes of this study were to examine the consistency of wheelchair athletes’ upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.


Sign in / Sign up

Export Citation Format

Share Document