A Way to Enhance the Efficiency of a Vertical Axis Wind Turbine

2019 ◽  
Vol 889 ◽  
pp. 410-417
Author(s):  
Quang The Phan ◽  
Thị Thu Hà Phan ◽  
Ahmed Sherif El-Gizawy ◽  
Thị Hồng Mai Phan

Vertical Axis Wind Turbine (VAWT) can perform better than Horizontal Axis Wind Turbine (HAWT) because VAWTs are relatively simple, quiet, and easy to install. It can take wind from any directions, and operate efficiently in urban areas where turbulent wind conditions usually happen. The weakest point for its configuration, however, is its low efficiency so more intensive research is required.Actual VAWT performance can be predicted based on a determination of the forces acting on blades that produce the turbine’s torque. Thus, this paper proposed a new model of force analysis for calculation of VAWT’s performance and a way to enhance the efficiency of VAWT through proper variations of the pitch angles. Additionally, in order to increase the efficiency of the VAWT for a given tip speed ratio, the solidity in term of blade’s number can be adjusted.Results show that right changes in the value of pitch angles and proper selection of the number of blades can considerably increase the efficiency of the turbine and reduce amplitude of turbine’s torque variation. The new model of force analysis can be helpful for aerodynamic analysis of the VAWT turbine for its better design.

2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2013 ◽  
Vol 859 ◽  
pp. 28-32
Author(s):  
Yi Mei ◽  
Jian Jun Qu ◽  
Xiao Ya Liu

This paper presents a numerical study of a vertical axis wind rotor configuration. Below constant wind condition 8m/s, rotor power performance was investigated over variable turbine configurations. Illustrated by the simulation, increasing rotor cord to radius ratio or blade numbers will enhance the generation of vortexes and flow separation on blades, leading to the significant degradation of turbine performance. It can be conclude form the numerical analysis, a vertical axis wind turbine with high height to radius ratio applied in urban areas experienced better performance when operating in optimal tip speed ratio, with rotor cord to radius ratio between 0.2 and 0.4 and blade number of 3 or 4.


Author(s):  
Mosfequr Rahman ◽  
Mohammad Bashar ◽  
Gustavo Molina ◽  
Valentin Soloiu ◽  
Travis Salyers

The continuous improvement of this world is based on technological advancement. And the technological advancement is directly related to the utilization of energy. The demand of energy is creeping up every day due to increase of population, industrial and agricultural advancement. But the conventional energy sources are becoming limited which is ultimately making them more expensive. In addition to this, everyone is concerned about global climate change. This whole scenario is pushing the world to find the alternative sources of energy. Alternative sources involve natural phenomena such as sunlight, wind, tides, plant growth, and geothermal heat. Solar and Wind power are the most popular among the various sources of renewable energy. Wind alone can fulfill most of the energy requirement of the world by its efficient conversion in to energy. Though Horizontal Axis Wind Turbine (HAWT) is more popular but needs high wind speed to extract energy from the wind. On the Other hand Vertical Axis Wind Turbine (VAWT) can run at low wind speed, independent of wind direction and can be installed anywhere with cheapest cost. The main objective of this research is to improve the design and performance of VAWT to make it more attractive, efficient, durable and sustainable. For a VAWT, the blades perform the main role to extract energy from the wind. Airfoil is considered as the blade for this new design of VAWT. Airfoil has some good aerodynamic characteristics, matches with the characteristics of Savonious type VAWT, such as good stall characteristics and little roughness affect, relatively high drag and low lift coefficient. Three dimensional CAD models of various simple airfoils have been designed in Solidworks. Using these airfoils CFD simulation has been performed for five different VAWT designed models. Moving mesh and fluid flow simulation have been performed using CFD software FLUENT. The findings of these numerical simulations provided pressure contour, velocity contour, drag coefficient, lift coefficient, torque coefficient and power coefficient for all these models. From the results it can be concluded that NACA7510 airfoil VAWT model gives the better performance at higher Tip Speed Ratio (λ) than other models.


The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


Author(s):  
Sadek Ameziane ◽  
Abdesselem Chikhi ◽  
Mohammed Salah Aggouner

Background: The presented article is a contribution to the realization of a wind emulator based on a continuous-current machine. The development of this topic focuses on the modeling of a vertical axis wind turbine, a DC motor with independent excitation and its control via a chopper. Methods: To carry out this work, we have studied and designed the electronic and mechanical sensors as well as a command implemented on the dSPACE DS1103 system. Results: The main purpose of this work is related, on one hand, to the control of the motor turbine by imposing the wind profile and on the other hand generate the command of the implanted MPPT. The experimental results obtained showed the great performances which characterize this improved wind energy system. Conclusion: Finally, a wind turbine with variable speed is a system having a complex model; however, a detailed model of the interaction between the wind and the aero-turbine is useful to understand certain phenomena such as rotational sampling or the spatial filter.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2021 ◽  
Vol 11 (3) ◽  
pp. 1033
Author(s):  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Pitch regulation plays a significant role in improving power performance and achieving output control in wind turbines. The present study focuses on a novel, pitch-regulated vertical axis wind turbine (VAWT) with inclined pitch axes. The effect of two pitch parameters (the fold angle and the incline angle) on the instantaneous aerodynamic forces and overall performance of a straight-bladed VAWT under a tip-speed ratio of 4 is investigated using an actuator line model, achieved in ANSYS Fluent software and validated by previous experimental results. The results demonstrate that the fold angle has an apparent influence on the angles of attack and forces of the blades, as well as the power output of the wind turbine. It is helpful to further study the dynamic pitch regulation and adaptable passive pitch regulation of VAWTs. Incline angles away from 90° lead to the asymmetric distribution of aerodynamic forces along the blade span, which results in an expected reduction of loads on the main shaft and the tower of VAWTs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hashwini Lalchand Thadani ◽  
Fadia Dyni Zaaba ◽  
Muhammad Raimi Mohammad Shahrizal ◽  
Arjun Singh Jaj A. Jaspal Singh Jaj ◽  
Yun Ii Go

PurposeThis paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.Design/methodology/approachThis project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.FindingsComputational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.Originality/valueWind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Sign in / Sign up

Export Citation Format

Share Document