Evaluation of Building Structure Resilience due to Flood Disaster that are outside the Riverbanks in the Floodplains

2020 ◽  
Vol 897 ◽  
pp. 239-244
Author(s):  
Gina Fairuz ◽  
Dwinanti Rika Marthanty ◽  
Jessica Sjah

. Landuse changing along the Bidara Cina, downstream of the Ciliwung floodplain deteriorates its environmental quality. Its interactions between the building along the floodplain and the river dynamics can be simulated with Ansys Fluent as a simulation tool. This tool simulates the impact of floods could damage the buildings structure that built in flood zones but are still within the limits of habitable zone permits. Ansys Fluent modelling is using CFD parameters, by creating geometric scenarios that have been physically tested. The geometric behavior observed through the effect of large window openings (Experiment x), namely model 1 with one window and model 2 with 2 windows, then it is analysed by rotating 0°, 30°, 45°, 60° and 90° of the building (Experiment y). The outputs that will be analyse from flood induced the building are (i) flood impact force, (ii) total force of building, and (iii) reduction of flow velocity in building. From the simulation result, it is found that building geometry with larger openings is better at resisting the impact strength of floods and reducing the velocity of flood flows. Furthermore, the graph of flood impact force and the total force of orientation in model 1 and model 2 have a tedency to increase while rotation angle increasing. We conclude that based on building type (Experiment x), the model with one window is most vulnerable model and based on building orientation (Experiment y), the model with orientation 90° is the most vulnerable model, but when viewed based on facade that is exposed to the main stream there is an opening, the orientation of 60° is the most vulnerable model.

2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 13
Author(s):  
Yixuan Sun ◽  
Stephen Beeby

This paper presents the COMSOL simulations of magnetically coupled resonant wireless power transfer (WPT), using simplified coil models for embroidered planar two-coil and four-coil systems. The power transmission of both systems is studied and compared by varying the separation, rotation angle and misalignment distance at resonance (5 MHz). The frequency splitting occurs at short separations from both the two-coil and four-coil systems, resulting in lower power transmission. Therefore, the systems are driven from 4 MHz to 6 MHz to analyze the impact of frequency splitting at close separations. The results show that both systems had a peak efficiency over 90% after tuning to the proper frequency to overcome the frequency splitting phenomenon at close separations below 10 cm. The four-coil design achieved higher power efficiency at separations over 10 cm. The power efficiency of both systems decreased linearly when the axial misalignment was over 4 cm or the misalignment angle between receiver and transmitter was over 45 degrees.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Jingchen Hu ◽  
Tianshu Wang

This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.


2011 ◽  
Vol 378-379 ◽  
pp. 370-373
Author(s):  
Yu Qing Yuan ◽  
Xuan Cang Wang ◽  
Hui Jun Shao

In order to solve the problem of aeolian sand subgrade compaction, we studied the technology of impact compaction, applied it to the engineering practice and analyzed its effect with Rayleigh wave. The technology of impact compaction can combine the compaction of potential energy and kinetic energy and make it easier for the materials to reach their elastic stage. With the combined function of "knead-roll-impact", the impact compaction road roller can compact the soil body and offer 6~10 times impact force and 3~4 times the depth of influence more than the vibratory roller. The impact compaction methods of aeolian sand subgrade were put forward. The comparative field compaction tests between impact and vibratory compaction are carried through, which are detected by Rayleigh wave. The results show that the impact compaction can make the density of the aeolian sand subgrade 2~5% higher than the vibratory compaction, and reach the influence depth of 7 metres. To sum up, the impact compaction can clearly increases the strength and stiffness of aeolian sand subgrade with a dynamic elastic modulus of 202.63MPa.


2021 ◽  
pp. 095745652110307
Author(s):  
Kangping Gao ◽  
Xinxin Xu ◽  
Ning Shi ◽  
Shengjie Jiao

In the process of drilling and coring by the rock-breaking rig, the drill rod is affected by the intermittent impact force, which reduces the efficiency of the rig to break the rock and increases the cost of the drilling and coring. Therefore, it is very important to improve the impact resistance of the drill pipe during the rock-breaking process. To achieve this goal, a flexible design of the drill pipe was carried out, and a dynamical model of the drilling rig based on a series elastic actuator was established. Considering the dynamic performance of the system, a torque feedforward link is introduced and a control model based on the force source is established. The influence of the equivalent inertia of the transmission system and the series elastic actuator damping coefficient on the system stability was analyzed by drawing the frequency domain characteristic curve of the system. By using the control and Simulink simulation software, the electromechanical simulation of the model is carried out, and the torque step tracking response of the system is obtained. A torque feedforward link is introduced to establish the control model of the system based on force source. Through dynamic simulation software ADAMS, dynamic and static impact simulation experiments were carried out on the system. The results show that when a force of 200 N is applied to the output end of the drill pipe in the tangential direction, the maximum moments received by the joint under static and dynamic environments are 34.1 N·m and 57.9 N·m, respectively. When the impact force disappears, the time required for the flexible drill pipe to reach a stable state is only 0.15 s, which verifies that the series elastic actuator–based drill pipe model can alleviate the impact of the external environment and protect the internal structure of the rig.


Author(s):  
Hervé Vicari ◽  
C.W.W. Ng ◽  
Steinar Nordal ◽  
Vikas Thakur ◽  
W.A. Roanga K. De Silva ◽  
...  

The destructive nature of debris flows is mainly caused by flow bulking from entrainment of an erodible channel bed. To arrest these flows, multiple flexible barriers are commonly installed along the predicted flow path. Despite the importance of an erodible bed, its effects are generally ignored when designing barriers. In this study, three unique experiments were carried out in a 28 m-long flume to investigate the impact of a debris flow on both single and dual flexible barriers installed in a channel with a 6 m-long erodible soil bed. Initial debris volumes of 2.5 m<sup>3</sup> and 6 m<sup>3</sup> were modelled. For the test setting adopted, a small upstream flexible barrier before the erodible bed separates the flow into several surges via overflow. The smaller surges reduce bed entrainment by 70% and impact force on the terminal barrier by 94% compared to the case without an upstream flexible barrier. However, debris overflowing the deformed flexible upstream barrier induces a centrifugal force that results in a dynamic pressure coefficient that is up to 2.2 times higher than those recommended in guidelines. This suggests that although compact upstream flexible barriers can be effective for controlling bed entrainment, they should be carefully designed to withstand higher impact forces.


Sign in / Sign up

Export Citation Format

Share Document