3D Numerical Simulation of Majiabian Concrete Gravity Dam

2011 ◽  
Vol 90-93 ◽  
pp. 2624-2632
Author(s):  
Lin Ke Li ◽  
Ai Jun Zhang ◽  
Jin Yu Liu ◽  
Chun Jiao Hou ◽  
Hao Dong Li

A new method that 3D numerical simulation combined with anti-cut stability analysis is employed to analyze the stability of Majiabian gravity dam, and the results of the analysis conform to the measured value. And this method can be used in analysis of congener gravity dam. When the results of 2D sliding stability analysis satisfy Code’s requirements, elastic material can be used in 3D numerical simulation. The results of water level sensitivity analysis and deformation modulus of its foundation sensitivity analysis indicates that this gravity dam is insensitive to water level; grouting method can be adopted to enhance its foundation. The results of abutment under tension stress analysis indicate that tension stress of abutment must be considered in high gravity dam design, and arch can be used for reducing the tension stress.

Author(s):  
Huda Abdul Satar ◽  
Raid Kamel Naji

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.


2010 ◽  
Vol 36 (4) ◽  
pp. 481-497 ◽  
Author(s):  
B. Phansri ◽  
S. Charoenwongmit ◽  
P. Warnitchai ◽  
D.H. Shin ◽  
K.H. Park

2015 ◽  
Vol 29 (04) ◽  
pp. 1550006 ◽  
Author(s):  
Guanghan Peng

In this paper, a new lattice model is proposed with the consideration of the multiple optimal current differences for two-lane traffic system. The linear stability condition and the mKdV equation are obtained with the considered multiple optimal current differences effect by making use of linear stability analysis and nonlinear analysis, respectively. Numerical simulation shows that the multiple optimal current differences effect can efficiently improve the stability of two-lane traffic flow. Furthermore, the three front sites considered, is the optimal state of two-lane freeway.


2016 ◽  
Vol 27 (05) ◽  
pp. 1650050 ◽  
Author(s):  
Guanghan Peng

A new lattice model is proposed by taking into account the interruption probability with passing for two-lane freeway. The effect of interruption probability with passing is investigated about the linear stability condition and the mKdV equation through linear stability analysis and nonlinear analysis, respectively. Furthermore, numerical simulation is carried out to study traffic phenomena resulted from the interruption probability with passing in two-lane system. The results show that the interruption probability with passing can improve the stability of traffic flow for low reaction coefficient while the interruption probability with passing can destroy the stability of traffic flow for high reaction coefficient on two-lane highway.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 965-967
Author(s):  
Piotr Andrzej Bąk ◽  
Krzysztof Jemielniak

Self-excited vibrations significantly reduce the milling productivity, deteriorate the quality of machined surface and tool life. One of the ways to avoid these vibrations is to modify the cutting parameters based on the stability analysis results. A method of numerical simulation of self-excited vibrations in the time domain can be used for this purpose. A comparison of numerical simulation results with those from experiments conducted using a milling machine is presented. The results confirm the correctness of applied modeling.


2020 ◽  
Vol 15 (2) ◽  
pp. 114-122
Author(s):  
Teddy Wartono Sudinda

Abstract The collapse of the embankment is a problem that needs attention to find the right solution, so that the risk can be minimized. The condition of the embankment is influenced by the strength of the soil layer of the embankment, groundwater flow in the embankment, the condition of the water level of the embankment and human activities around the embankment. Changes in the quality of soil density in the embankment can form cavity zones within the embankment which cause changes in groundwater flow patterns in the embankment. The degradation of the soil layer of the embankment can cause piping, overtopping which is the cause of erosion of the embankment body and disturbs the stability of the embankment. Therefore, to determine the condition of the embankment soil layer, research on the stability of the embankment has been carried out using the geoelectric method at the location of the embankment in the Cipancuh and Penjalin reservoirs, so that an image of the embankment soil layer is obtained to determine the cavity zones in the embankment, the flow pattern in the embankment soil layer. Keywords:  cavity zones, flow patterns, geoelectric methods, the stability of the embankment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jin-Zhu Mao ◽  
Jia Guo ◽  
Yong Fu ◽  
Wei-Peng Zhang ◽  
Ya-Nan Ding

The instability of reservoir slope is likely to cause some severe natural hazards such as surge and barrier lake. In this study, the changes in seepage field and the distribution of the unsaturated zone of a reservoir bank slope subjected to rapid water-level fluctuations are investigated using the finite element method. The stability analysis of a reservoir slope under water-level fluctuation with a rate of 2 m/day is performed. The stability analysis is based on the theory of unsaturated soil mechanics and saturated-unsaturated seepage and accounts for the hydromechanical coupling effect. The changes in shear stress and strain as well as pore water pressure due to rapid water-level fluctuations are explicitly examined. Furthermore, the stability factor of safety, the underlying failure mechanism, and relevant influence factors are discussed. Based on the finite element analysis, it is found that the rapid loss of matrix suction would give rise to the surface landslide near the slope toe.


Sign in / Sign up

Export Citation Format

Share Document