Behaviors of Polyurethane Filled Double Skin Steel Tubular Members

2011 ◽  
Vol 94-96 ◽  
pp. 196-200
Author(s):  
Zhen Yuan Hang ◽  
Xu Feng Mi

Based on the nonlinear finite element software, the mechanical properties of polyurethane filled double skin steel tubular (PFDSST) members with different hoop coefficients and slenderness ratios under axial compression have been studied by nonlinear finite element software. On the basis of the researches on the numerical simulation results, it was summarized that the influences on stability, ductility and properties of the PFDSST members under axial compression, and then the work processes of the PFDSST members have been revealed deeply, the theoretical basis for the designs of the PFDSST members was established.

2014 ◽  
Vol 898 ◽  
pp. 136-139
Author(s):  
Chang Feng Men ◽  
Wen Wen Du ◽  
Cui Hong Han

In order to research on the hot stamping property of high strength steel, the stamping forming of USIBOR1500P is simulated by the nonlinear finite element software Dynaform and Ansys/ls-dyna. The initial data simulated on USIBOR1500P is obtained by the hot tensile test. The simulation results show that the martensite weight percentage and Vickers hardness are in inverse proportion to stamping speed and initial die temperature.


2013 ◽  
Vol 681 ◽  
pp. 191-194
Author(s):  
Li Li Huang ◽  
Xiao Yang Lu ◽  
Xiang Wei Zhang

The numerical simulation of the ironing process of deep cup shaped part was conducted by finite element software Deform 3D. The influences of interface friction and deformation velocity on the forming load and blank damage were studied in this paper. The simulation results showed that the forming load and damage increased obviously with the increase of the friction between the blank and cavity die. The blank damage increased and the forming load decreased with the increase of deformation velocity. These conclusions provide a reliable theoretical basis for the optimization of the ironing process of deep cup shaped part.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


2016 ◽  
Vol 723 ◽  
pp. 801-806
Author(s):  
Tie Jun Tao ◽  
Lian Sheng Liu ◽  
En An Chi ◽  
Ming Sheng Zhao

The effect of cut height on collapse area is simulated and analyzed by dynamic finite element software. Meanwhile, the simulated collapse processes of the cooling tower with different cut height were completed in a parallel study, the results of which are briefly introduced in this paper. The results show that: as the cut height increases, ground vibration on surrounding structures and collapse area of cooling tower decreases. At last, numerical simulation results were used in blasting project, which reduced hazard of collapse vibration and verify the scientific of this method.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 891 ◽  
Author(s):  
Guangsong Ma ◽  
Guanglin He ◽  
Yukuan Liu ◽  
Yachao Guo

To study the influence of the structural parameters of the ammunition liner of small-caliber ammunition on the forming characteristics of the projectile, an integrated circumferential multiple explosively formed projectile (MEFP) warhead with an integrated shell and the liner was initially designed, and the wall thickness of the liner is variable. LS-DYNA finite-element software is used to simulate the integral circumferential MEFP of the preliminary design, based on the numerical simulation results, the influence of the thickness at the center of the liner, and the curvature radius of the liner on the shape and velocity of the formed projectile. The numerical simulation results show that when the thickness of the center of the liner is constant and the curvature radius increases gradually, the velocity of the formed projectile decreases and the length: Diameter ratio of formed projectile decreases gradually. When the curvature radius of the liner remains unchanged, the velocity of the formed projectile decreases with the increase of the thickness of the center of the liner, and the shape of the formed projectile does not change significantly. The results show that when the design of integrating the shell and the liner was adopted for the integral circumferential MEFP warhead, the shape of the formed projectile is greatly affected by the curvature radius of the liner (curvature radius of inner and outer walls of the liner), but less by the thickness of the center of the liner. The velocity of the formed projectile is affected by the curvature radius of the inner and outer walls of the liner and the thickness of the center of the liner. Moreover, the influence of the thickness of the center of the liner on the velocity of the formed projectile is greater than that of the curvature radius of the outer wall of the liner.


2013 ◽  
Vol 457-458 ◽  
pp. 1517-1522
Author(s):  
Wen Li ◽  
Hai Nan Yan ◽  
Peng Wang ◽  
Xiao Gang Chen ◽  
Li Na Yao

According to the basic idea of the finite element method, using the finite element software ANSYS to establish the finite element model of the reinforcement FRP pipe concrete under axial compression, introducing the unit selection in the process of building model ,based on the principle of meshing boundary conditions and constitutive relations selected; The significant degree of the model verified by compare with the test results. Analyzed by finite element reinforcement ratio, concrete strength and other factors on the mechanical properties of concrete under axial compression reinforcement FRP pipe, the analysis of the results shows: The increase of reinforcement ratio to improve the point load of the specimens and improve the composite column ultimate bearing capacity, but the reinforcement ratio increase will reduce the binding effect of the FRP pipe; The whole component be improved the strength of concrete can improve the ultimate bearing capacity, but it reduces the mechanical properties of the specimens.


2014 ◽  
Vol 578-579 ◽  
pp. 244-247
Author(s):  
Ya Feng Xu ◽  
Zhang Lin Zhai ◽  
Pi Yuan Xu

This article researches seismic performance of the joint of cellular steel column and steel beam through simulation of the finite element software. With the change of axial force, we can attain the load-displacement hysteretic curves, skeleton curves under the different axial compression ratio, and then analyze their bearing capacity, ductility, energy dissipation and other mechanical properties. Results show that, the decrease of axial compression ratio is helpful to improve the bearing capacity of specimens. The joints of cellular steel column and steel beam have full hysteretic curve, good ductility and seismic performance.


2014 ◽  
Vol 668-669 ◽  
pp. 490-493 ◽  
Author(s):  
Wei Hu ◽  
Yong Hu Wang ◽  
Cai Hua Chen

Aircraft Ditching is related primarily with the aviation safety. Firstly, the full-scaled shape of Boeing 777-200 is modeled according to the lost MH370 aircraft on 8th March. And then an Arbitrary Lagrange-Euler (ALE) fluid-field model is created for water and air domain. Next some simulation cases are implemented related to different vertical velocities using LS-DYNA nonlinear finite-element code, with the same horizontal velocity and attack angle. At the same time, the variations of the velocity of the head and tail are discussed. Consequently, Ditching overload peak occurs at the highest vertical velocity. The simulation results can deeply be applied to accident analysis of aircraft impacting on water.


2011 ◽  
Vol 337 ◽  
pp. 270-273 ◽  
Author(s):  
Yang Jiang ◽  
Bao Yu Wang ◽  
Zheng Huan Hu ◽  
Jian Guo Lin

The paper investigates a process of cross wedged rolling (CWR) for manufacturing thick-walled hollow axles. A finite element numerical model coupled deformation and heat transfer of CWR is established using commercial finite element software DEFORM-3D. The rolling process of hollow axle during CWR is simulated successfully. The stress, strain and temperature distributions of workpiece are obtained and analyzed. The simulation results show that forming thick-walled hollow axles through CWR is feasible.


Sign in / Sign up

Export Citation Format

Share Document