Characterization of Pore Structure of Hardened Cement-Asphalt Paste by Mercury Intrusion Porosimetry

2014 ◽  
Vol 1004-1005 ◽  
pp. 1589-1593 ◽  
Author(s):  
Sheng Zhang ◽  
Xi Ling Zhou ◽  
Ke Ren Zheng ◽  
You Jun Xie ◽  
Qiang Fu

To know the pore structure of cement-asphalt pastes, mercury intrusion porosimetry was applied to measure the total porosity, pore distribution and accumulative volume distribution of pore size and the pore structures were analyzed. The results show that the total porosities decline with increase in ages and reduction in A/C ratio. The total porosities declines from 28% at 1d, to 15.8%~17.2% at 28d; the most probable pore size declines from 20nm at 1d to 5nm at 28d.At 28d, there is an increase in the magnitude of pore size between100nm and 5μm; the volume faction of smaller than 5μm is 40~50%; and the amount of pore size smaller than 5nm account for 6%.There are two peaks (5μm & 50μm) in the curves of pore distribution.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yong Zhang ◽  
Bin Yang ◽  
Zhengxian Yang ◽  
Guang Ye

Capturing the long-term performance of concrete must be underpinned by a detailed understanding of the pore structure. Mercury intrusion porosimetry (MIP) is a widely used technique for pore structure characterization. However, it has been proven inappropriate to measure the pore size distribution of cementitious materials due to the ink-bottle effect. MIP with cyclic pressurization–depressurization can overcome the ink-bottle effect and enables a distinction between large (ink-bottle) pores and small (throat) pores. In this paper, pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP) is adopted to characterize the pore structure in a range of cementitious pastes cured from 28 to 370 days. The results indicate that PDC-MIP provides a more accurate estimation of the pore size distribution in cementitious pastes than the standard MIP. Bimodal pore size distributions can be obtained by performing PDC-MIP measurements on cementitious pastes, regardless of the age. Water–binder ratio, fly ash and limestone powder have considerable influences on the formation of capillary pores ranging from 0.01 to 0.5 µm.


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840017 ◽  
Author(s):  
FUYONG WANG ◽  
KUN YANG ◽  
JIANCHAO CAI

Tight oil sandstones have the characteristics of narrow pore throats, complex pore structures and strong heterogeneities. Using nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP), this paper presents an advanced fractal analysis of the pore structures and petrophysical properties of the tight oil sandstones from Yanchang Formation, Ordos Basin of China. Firstly, nine typical tight oil sandstone core samples were selected to conduct NMR and MIP test for pore structure characterization. Next, with the pore size distribution derived from MIP, it was found that the relationships between NMR transverse relaxation time [Formula: see text] and pore size are more accordant with the power function relations, which were applied to derive pore size distribution from NMR rather than the linear relation. Moreover, fractal dimensions of micropores, mesopores and macropores were calculated from NMR [Formula: see text] spectrum. Finally, the relationships between the fractal dimensions of different size pores calculated from NMR [Formula: see text] spectrum and petrophysical properties of tight oil sandstones were analyzed. These studies demonstrate that the combination of NMR and MIP can improve the accuracy of pore structure characterization and fractal dimensions calculated from NMR [Formula: see text] spectrum are effective for petrophysical properties analysis.


2007 ◽  
Vol 336-338 ◽  
pp. 1618-1621
Author(s):  
Li Gou ◽  
Shun Qiao Cheng ◽  
Jun Guo Ran ◽  
Bao Hui Su

The porous structure of calcium phosphate ceramics is one of the essential conditions resulting in bone formation. The porous structure of biphasic HA/β-TCP ceramics was improved by adding microporous porosifer and the porous characteristics such as porosity, pore size and pore size distribution were determined by the mercury intrusion porosimetry, the cell culture in vitro and the animal experiment. By means of SEM and fluorescence decoration, cells were observed firstly attaching the edge of macropores of specimens and the wall of the macropores with micropores when co-cultured with HA/β-TCP ceramics. The specimens were also implanted in dorsal muscles of healthy dogs for 1.5and 3 months. More bone formation in the specimen with microporous porosifer was found by histological observation after taking out. It suggested that the micropores in the walls of macropores of bioceramics had important effect upon their osteoinduction.


2018 ◽  
Vol 199 ◽  
pp. 02020
Author(s):  
Natalia Alderete ◽  
Yury Villagrán ◽  
Arn Mignon ◽  
Didier Snoeck ◽  
Nele De Belie

Pore structure characterization is a key aspect when studying the durability of cementitious materials. When supplementary cementitious materials (SCMs) are used changes in pore structure are expected, and the complexity of its analysis is increased. The purpose of this paper is to describe the pore structure variation of mortars with two types of SCMs: natural pozzolan from volcanic origin (NP), and limestone powder (LP). We tested mixes with cement replacements (in weight) of 20 % and 40% by NP, and 10 % and 20% by LP. To analyse the pore structure, two widely accepted and complementary techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). With the DVS data, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Calculations with the Dubinin-Radushkevich (DR) model were also made for the smallest pore size range. Tests were performed at 28 and 90 days. MIP and DVS allowed evaluating the effect of the studied SCMs on different pore size ranges. Both techniques provided comprehensive information over a wide range of pore sizes. The mix with 40 % of NP had the best evolution, showing a significant volume decrease in the mesopore range.


2019 ◽  
Vol 9 (8) ◽  
pp. 1680 ◽  
Author(s):  
Zhu ◽  
Yang ◽  
Lu ◽  
Liu ◽  
Li ◽  
...  

Coalbed methane (CBM) mainly adsorb in massive pores of coal. The accurate characterization of pores benefits CBM resource evaluation, exploration and exploitation. In this paper, mercury intrusion porosimetry (MIP) and low temperature nitrogen adsorption (N2GA) combined with low field nuclear magnetic resonance (NMR) experiments were conducted to analyze the advantages and differences among different experimental techniques in pore characterization. The results show that the total porosity has a tendency to decrease first and then rise with the increase of coal rank, which is mainly caused by the compaction in early stage and the thermogenic gas produced in middle and late stages of coalification. The comparison between different techniques shows that NMR is superior to the conventional methods in terms of porosity and pore size distribution, which should be favorable for pore characterization. The N2GA pore size measurement, based on BJH model, is only accurate within 10‒100 nm in diameter. There is a peak misalignment between the NMR and MIP results in the pore size comparison. The reason for this phenomenon is that there is a centrifugal error in NMR experiment, which could cause a differential damage to the coal sample, resulting in partial loss of the nuclear magnetic signal.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Alexander Pfriem ◽  
Mario Zauer ◽  
André Wagenführ

Abstract The pore size distribution in wood affects sorption and transport of moisture. In the present paper, the pore structure of spruce and maple was examined in untreated and thermally modified samples. The relative humidities of the specimens were 33%, 43%, 53%, and 76%. Tests were carried out by helium pycnometry and mercury intrusion porosimetry. The results clearly show that thermal treatments change the apparent density, pore structure, and pore size distribution. Measurements by the mercury intrusion porosimetry indicated that the influence of various environmental conditions (humidity, temperature) on the porosity and pore size distribution is small.


2012 ◽  
Vol 517 ◽  
pp. 403-410
Author(s):  
Jia Xiao ◽  
Bao Guo Ma ◽  
Rong Zhen Dong ◽  
Cai Yun Xu

The effect of ground limestone fineness on the properties and mechanism of cement-based composite materials was investigated. The setting times, fluidity and strength of cement mortar were measured. In order to identify the mechanism effect of ground limestone fineness on the microstructure of the hardened cement pastes, microstructure analyses such as calorimetry analysis and Mercury Intrusion Porosimetry (MIP) were also performed. Experimental results indicated that the setting times are shortened, and the fluidity and strength of cement mortar are improved with the ground limestone fineness increases. The increase of the ground limestone fineness can effectively inhibit the pore structure of hardened paste, which due to mortar and paste samples incorporating replacement levels of ground limestone, and improve the pore structure of hardened paste.


Sign in / Sign up

Export Citation Format

Share Document