scholarly journals Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization–Depressurization Cycling Mercury Intrusion Porosimetry

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yong Zhang ◽  
Bin Yang ◽  
Zhengxian Yang ◽  
Guang Ye

Capturing the long-term performance of concrete must be underpinned by a detailed understanding of the pore structure. Mercury intrusion porosimetry (MIP) is a widely used technique for pore structure characterization. However, it has been proven inappropriate to measure the pore size distribution of cementitious materials due to the ink-bottle effect. MIP with cyclic pressurization–depressurization can overcome the ink-bottle effect and enables a distinction between large (ink-bottle) pores and small (throat) pores. In this paper, pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP) is adopted to characterize the pore structure in a range of cementitious pastes cured from 28 to 370 days. The results indicate that PDC-MIP provides a more accurate estimation of the pore size distribution in cementitious pastes than the standard MIP. Bimodal pore size distributions can be obtained by performing PDC-MIP measurements on cementitious pastes, regardless of the age. Water–binder ratio, fly ash and limestone powder have considerable influences on the formation of capillary pores ranging from 0.01 to 0.5 µm.

2018 ◽  
Vol 199 ◽  
pp. 02020
Author(s):  
Natalia Alderete ◽  
Yury Villagrán ◽  
Arn Mignon ◽  
Didier Snoeck ◽  
Nele De Belie

Pore structure characterization is a key aspect when studying the durability of cementitious materials. When supplementary cementitious materials (SCMs) are used changes in pore structure are expected, and the complexity of its analysis is increased. The purpose of this paper is to describe the pore structure variation of mortars with two types of SCMs: natural pozzolan from volcanic origin (NP), and limestone powder (LP). We tested mixes with cement replacements (in weight) of 20 % and 40% by NP, and 10 % and 20% by LP. To analyse the pore structure, two widely accepted and complementary techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). With the DVS data, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Calculations with the Dubinin-Radushkevich (DR) model were also made for the smallest pore size range. Tests were performed at 28 and 90 days. MIP and DVS allowed evaluating the effect of the studied SCMs on different pore size ranges. Both techniques provided comprehensive information over a wide range of pore sizes. The mix with 40 % of NP had the best evolution, showing a significant volume decrease in the mesopore range.


2006 ◽  
Vol 302-303 ◽  
pp. 479-485 ◽  
Author(s):  
J. Hu ◽  
Piet Stroeven

In this paper, a mathematic morphology measurement with the name of opening operation was applied to section images for the assessment of pore size distribution in cement pastes. This method is compared with other methods for characterising pore size distribution, including the experimental technique of mercury intrusion porosimetry, the conventional image analysis by area histogram and a direct approach by a simulation model. The comparison study reveals that the so-called opening distribution technique yields realistic structural information of pore size distribution in cement pastes. The proper characterisation of pore size distribution is of significant importance to permeability prediction of cementitious materials and thereby to durability studies of the materials.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Alexander Pfriem ◽  
Mario Zauer ◽  
André Wagenführ

Abstract The pore size distribution in wood affects sorption and transport of moisture. In the present paper, the pore structure of spruce and maple was examined in untreated and thermally modified samples. The relative humidities of the specimens were 33%, 43%, 53%, and 76%. Tests were carried out by helium pycnometry and mercury intrusion porosimetry. The results clearly show that thermal treatments change the apparent density, pore structure, and pore size distribution. Measurements by the mercury intrusion porosimetry indicated that the influence of various environmental conditions (humidity, temperature) on the porosity and pore size distribution is small.


Author(s):  
Petra Foerst ◽  
M. Lechner ◽  
N. Vorhauer ◽  
H. Schuchmann ◽  
E. Tsotsas

The pore structure is a decisive factor for the process efficiency and product quality of freeze dried products. In this work the two-dimensional ice crystal structure was investigated for maltodextrin solutions with different concentrations by a freeze drying microscope. The resulting drying kinetics was investigated for different pore structures. Additionally the three-dimensional pore structure of the freeze dried samples was measured by µ-computed tomography and the pore size distribution was quantified by image analysis techniques. The two- and three-dimensional pore size distributions were compared and linked to the drying kinetics.Keywords: pore size distribution; freeze drying; maltodextrin solution; freeze drying microscope   


2015 ◽  
Vol 52 (6) ◽  
pp. 808-811 ◽  
Author(s):  
C.W.W. Ng ◽  
J.L. Coo

The focus of this note is to investigate the hydraulic conductivity behavior of clay mixed with nanomaterials. Two different nanomaterials — namely, gamma-aluminum oxide powder (γ-Al2O3) and nano-copper oxide (CuO) — were selected and mixed with clay at different percentages (i.e., 2%, 4%, and 6%). Hydraulic conductivity tests were carried out in a flexible wall permeameter following the ASTM D5084 standard. Mercury intrusion porosimetry (MIP) tests were also carried out to determine the pore-size distribution. At 2% of γ-Al2O3 and nano-CuO, the hydraulic conductivity of clay decreased 30% and 45%, respectively. As the proportion of the nanomaterial increases, the reduction of hydraulic conductivity becomes less prominent as flow paths devoid of nanomaterials are unlikely. Reduction of hydraulic conductivity is due to the pores of clay being clogged by the nanomaterial. Pore-size distribution curves show that the largest pore size reduced by 20% when clay was mixed with 4% nano-CuO.


2016 ◽  
Vol 57 (5) ◽  
pp. 201-212 ◽  
Author(s):  
Weiren LIN ◽  
Manabu TAKAHASHI ◽  
Daisaku SATO ◽  
En-Chao YEH ◽  
Yoshitaka HASHIMOTO ◽  
...  

2017 ◽  
Vol 31 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Milena Kercheva ◽  
Zofia Sokołowska ◽  
Mieczysław Hajnos ◽  
Kamil Skic ◽  
Toma Shishkov

Abstract The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.


Sign in / Sign up

Export Citation Format

Share Document