The Parameters Control of Recirculation Treatment for Leachate

2014 ◽  
Vol 1015 ◽  
pp. 340-345
Author(s):  
Bao Jun Jiang ◽  
Zhu Jun Tian ◽  
Jin Ming Jiang

The three parameters, hydraulic loading rate, organic loading rate and recirculation times have important influence on the efficiency of recirculation treatment, the recirculation experiment research removal of COD under different hydraulic loading rate, organic loading rate and recirculation times by the experimental devices built in landfill in a civil city. The result indicated that the hydraulic loading rate is the major influence parameter for leachate recirculation. When hydraulic loading rate was 30ml/L·d~200ml/L·d, COD removal efficiency was 70%~94%; However, organic loading rate has comparative minor influence on recirculation treatment; the apt recirculation times are 3 or 4 in a day; C/N of recirculation leachate have important influence on NH3-N removal rate, but the effect of hydraulic loading rate and recirculation times on NH3-N removal rate aren’t obvious.

2013 ◽  
Vol 864-867 ◽  
pp. 1498-1502
Author(s):  
Qing Feng Chen ◽  
Wen Guo Dong ◽  
Jun Jian Ma ◽  
Qing Li ◽  
Xin Guo Gao ◽  
...  

Hydraulic loading rate (HLR) is an important operational parameter for constructed wetland to purify wastewater. In this paper, it is the main objective to select the optimal parameter of HLR. During the four HLRs (i.e., 6 cm/d, 12 cm/d, 24 cm/d and 48 cm/d) operation period, six days were used as one stage. The experimental results showed that the best average removal rates of CODcr (59.7%) and NH3-N (89.4%) were at the HLR of 6 cm/d. In the meantime, the best average removal rate of total phosphorus (TP, 50.0%) was at the HLR of 24 cm/d. According to the low influent TP concentration, it is suggested that the HLR of 6 cm/d should be used in the multi-stage constructed wetland.


2011 ◽  
Vol 130-134 ◽  
pp. 3515-3517
Author(s):  
Ping Lu ◽  
Tao Ding ◽  
Jin Ye Li ◽  
Jin Xia Mu

The potential of phosphorus removal rate was investigated using a lab scale UASB reactor The volumetric phosphorus removal rate was up to 20 mgP/L•d, and the phosphorus effluent concentration was below 0.5 mgP/L under high organic loading rate. Biological phosphorus assimilation could be the main pathways of phosphorus removal in UASB reactor, and the organic loading rate could be the main factor affecting phosphorus removal.


2015 ◽  
Vol 72 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Zixing Wang ◽  
Xiaochen Xu ◽  
Fenglin Yang ◽  
Zhongxia Tan ◽  
Jie Chen

Phenol and nitrogenous heterocyclic compounds (NHCs) are typical organic pollutants in coal gasification wastewater which are difficult to deal with. Unlike phenol, the stable molecular structure of NHCs make them nearly impossible to degrade under aerobic or anaerobic condition. In this paper, biodegradation of phenol and NHCs as carbon sources for denitrification was studied in a laboratory-scale anoxic reactor. Denitrifiers could degrade 490 mg/L phenol and 321.5 mg/L NO3−-N within 12 hours with removal efficiencies of 99.8% and 99.6%, respectively. The inhibition of pyridine on the microbes could be reduced by adding phenol into influent and the experimental results showed that pyridine could be degraded as the sole carbon source with the maximum organic loading rate of 4.38 mg/(g MLSS·h) (MLSS: mixed liquor suspended solids). When phenol was included as a growth substrate, the degradation performance of quinoline and pyrrole was improved due to co-degradation, and removal rate of NHCs increased according with increment of phenol in influent.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2586
Author(s):  
Hongyan Zhao ◽  
Feifan Yan ◽  
Xue Li ◽  
Renzhe Piao ◽  
Weidong Wang ◽  
...  

We investigated the feasibility of producing biogas in a fixed-bed anaerobic reactor at 4 °C with a gradual increase in organic loading rate (OLR). Reactor efficiency was highest when OLR was 4.33 kg/m3·d, whereas the reactor acidification occurred when OLR was 4.67 kg/m3·d. The values of methane content, biogas production, chemical oxygen demand (COD) removal rate, biogas production rate, acetic acid content, and propionic acid content were 69.3%, 5.33 L, 59.8%, 1.03 L/OLR, 0.17 g/L, and 1.15 g/L, respectively. The pH was stable and ranged from 7.2 to 6.8 when the reactor was operating at 4 °C during OLR increase. The 16S rRNA gene analysis revealed that the dominant archaea were Methanosaetaceae at 30 °C. At 4 °C, the dominant archaea were Methanomicrobiales, which were more abundant in adhering sludge compared to settled sludge. In conclusion, operating a fixed-bed anaerobic reactor at psychrophilic temperatures is more suitable.


2003 ◽  
Vol 47 (11) ◽  
pp. 235-240 ◽  
Author(s):  
J.-H. Tay ◽  
S. Pan ◽  
S.T.L. Tay ◽  
V. Ivanov ◽  
Y. Liu

The effect of organic loading rate (OLR) on aerobic granulation was studied by adopting three column-shaped, sequential aerobic sludge blanket reactors (SASBR). The reactors had been fed with laboratory prepared, synthetic dextrose-nutrient broth substrate. Experimental results showed clearly that the formation, characteristics and stability of aerobic granules had a close relationship with the strength of OLR applied. Aerobic granules appeared firstly under the OLR of 4 kg COD×(m3·day)−1. The system stabilization was demonstrated by its little-changed amount and morphology of granules. The characteristics of the stabilized granules were: 5.4 mm in mean diameter, 1.29 in roundness, 118 mg O2·(mg VSS·hr)−1 in SPOUR. The respective biomass SVI was 50 mL·(g MLVSS)−1 and the averaged COD removal rate was 95%. Under the OLR of 8 kg COD·(m3·day)−1, granules appeared two days later than those for 4 kg COD·(m3·day)-1 and they always coexisted with flocs. The formed granule bed was not as compact as that under 4 kg COD·(m3·day)−1. There were no granules formed under the OLR of 1 kg COD·(m3·day)−1. Instead, flocs with rather loose structure dominated reactor mixed-liquor. The respective SVI's were 65 and 138 mL·(g MLVSS)−1 under OLR of 8 and 1 kg COD·(m3·day)−1. It was proposed that the growth and maintenance of aerobic granules follow the shear force balance theory. Under the OLR of 4 kg COD·(m3·day)−1, a balance was reached between the aeration shear force and organic loading rate. Under this favored condition aerobic granules formed quickly and, became stabilized with the experimental parameters remained unchanged.


1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


Jurnal BiBieT ◽  
2017 ◽  
Vol 2 (2) ◽  
pp. 49
Author(s):  
Welly Herman ◽  
Darmawan Darmawan ◽  
Gusnidar Gusnidar

<p><em>The research aimed to make Volcanic soil of Multiple Soil Layering (MSL) with different Hydraulic Loading Rate (HLR) on the purification of polluted irrigation water and to determine the appropriate HLR against purification of polluted irrigation water. The research used an MSL system of the same Soil Mixture Block (SMB) size from a study done by </em><em>(Chen et al., 2007)</em><em> arranged in an Acrylic box measuring 50 cm x 10 cm x 60 cm (PxLxT). Making SMB is done by mixing volcanic soil, sawdust, iron, charcoal that has been mashed by 50 mesh sieve, with a combination of 7: 1: 1: 1. The MSL system is supplied with irrigation water taken from the Gunuang Nago irrigation and Pasar Baru area, Cupak Tangah village, Pauh IX sub-district, Padang continuously with different HLR of 250 L/m<sup>2</sup>/day,     500 L/m<sup>2</sup>/ day and 1000 L/m<sup>2</sup>/day. From the result of this research, it is found that MSL system can decrease pollutant content in polluted irrigation water until the concentration below the water quality standard based on PP. 82 of 2001 and MSL system with HLR 250 L/m<sup>2</sup>/day have high ability in purifying BOD and COD and HLR 1000 L/m<sup>2</sup>/day has a high ability in purifying NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> on polluted irrigation water.</em></p><p class="jbd-alamat"> </p><p class="jbd-alamat">Tujuan penelitian ini adalah untuk menentukan pengaruh tanah vulkanik dalam sistem <em>Multiple Soil Layering</em> (MSL) dengan <em>Hydraulic Loading Rate</em> (HLR) yang berbeda terhadap pemurnian air irigasi terpolusi. Penelitian  menggunakan sistem MSL dengan ukuran <em>Soil Mixture Block</em> (SMB) yang sama dari penelitian yang telah dilakukan (Chen, Sato, Wakatsuki, &amp; Masunaga, 2007)yang disusun di dalam kotak Acrylic berukuran 50 cm x 10 cm x 60 cm (PxLxT).  <em>Soil Mixture Block</em> terdiri dari tanah vulkanik, serbuk gergaji, besi, arang yang telah dihaluskan oleh ayakan 50 mesh, dengan perbandingan kombinasi 7:1:1:1.  Sistem MSL dialirkan air irigasi yang diambil dari irigasi Gunuang Nago dan Kawasan Pasar Baru, Kelurahan Cupak Tangah, Kecamatan Pauh IX, Padang secara terus menerus dengan HLR yang berbeda yaitu 250 L/m<sup>2</sup>/hari,  500 L/m<sup>2</sup>/hari dan 1000 L/m<sup>2</sup>/hari. Dari hasil penelitian diperoleh bahwa sistem MSL mampu menurunkan kandungan zat pencemar pada air irigasi terpolusi  mencapai kosentrasi di bawah baku mutu air berdasarkan PP No. 82 tahun 2001 dengan HLR 250 L/m<sup>2</sup>/hari mempunyai kemampuan yang tinggi dalam memurnikan kadar pencemar BOD dan COD sedangkan HLR 1000 L/m2/hari mempunyai kemampuan yang tinggi dalam memurnikan kadar pencemar NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup> dan NO<sub>3</sub><sup>-</sup> pada air irigasi terpolusi.</p>


2000 ◽  
Vol 42 (12) ◽  
pp. 115-121 ◽  
Author(s):  
B. Wang ◽  
Y. Shen

A study on the performance of an Anaerobic Baffled Reactor(ABR) as a hydrolysis-acidogenesis unit in treating the mixed wastewater of landfill leachate and municipal sewage in different volumetric ratios was carried out. The results showed that ABR substantially improved the biological treatability of the mixed wastewater by increasing its BOD5/COD ratio to 0.4–0.6 from the initial values of 0.15–0.3. The formation of bar-shaped granular sludge of 0.5–5 mm both in diameter and length with an SVI of 7.5–14.2 ml/g was observed in all compartments of the ABR when the organic loading rate reached 4.71 kgCOD/m3 · d. The effects of the ratios of NH4+-N/COD and COD/TP in mixed wastewater on the operational performance were also studied, from which it was found that a reasonable NH4+-N/COD ratio should be lower than 0.02, and the phosphorus supplement was needed when the volumetric ratio was higher than 4:6 for stable operation of ABR.


2021 ◽  
Vol 123 ◽  
pp. 52-59
Author(s):  
L. Megido ◽  
L. Negral ◽  
Y. Fernández-Nava ◽  
B. Suárez-Peña ◽  
P. Ormaechea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document