Investigation of Grinding Characteristics of Cemented Carbides YL10.2 and YF06

2014 ◽  
Vol 1017 ◽  
pp. 104-108 ◽  
Author(s):  
Tao Xu ◽  
Jian Wu Yu ◽  
Zhong Jian Zhang ◽  
Jian Gang Tu ◽  
Xiang Zhong Liu ◽  
...  

YL10.2 and YF06 are ultrafine-grained cemented carbides, and grinding experiments were carried out with resin-bonded diamond grinding wheel. Based on measured grinding force, surface roughness and SEM topography, experimental results were analyzed; grinding forces and depth of grinding approach linear correlation; and the grinding force of YF06 is greater than that of YL10.2 in rough grinding, but the grinding force increases significantly if depth of cut is greater than a certain value in finish grinding. The trend of machined surface roughness looks like “V” type with the increasing of depth of cut; the material removal behavior of ultrafine-grained cemented carbides in grinding was observed; the ploughing and fragmentation exist simultaneously on the ground surface, and the dominated material removal behavior depends on the grinding parameters or chemical composition of workpiece.

2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2011 ◽  
Vol 299-300 ◽  
pp. 1060-1063 ◽  
Author(s):  
Y.X. Yao ◽  
Jin Guang Du ◽  
Jian Guang Li ◽  
H. Zhao

Mill-grinding experiments were carried out on SiCp/Al to investigate effects of mill-grinding parameters and grinding wheel parameters on machined surface roughness in this paper. The machined surface topography was also analyzed. Experimental results show that surface roughness increases with increasing feed rate and the depth of the mill-grinding. The effect of mill-grinding speed on surface roughness is low. The machined surface reveals many defects. The fine grit diamond grinding wheel can reduce the surface roughness and decrease the machined surface defect. Compared to the vitrified bonded diamond and electroplated diamond grinding wheels used in the experiment, the resin-based diamond grinding wheel produces a better surface.


2007 ◽  
Vol 359-360 ◽  
pp. 103-107
Author(s):  
Shi Chao Xiu ◽  
Chang He Li ◽  
Guang Qi Cai

Quick-point grinding is used to machine the round surface with super abrasive wheel at high grinding speed. Because it is point contact between the grinding wheel and the workpiece due to the point grinding angles in the process, the grinding model is different from the conventional cylindrical grinding in theory. Especially, the edge contact width between the wheel and the workpiece is not always equal to the thickness of the wheel, but rests with the depth of cut and the grinding angles greatly. The depth of cut has the effects on the micro-geometric properties especially the ground surface roughness by means of the variations of the edge contact width, the grinding force and heat in the process. Based on the theoretical studies on the surface roughness, the quick-point grinding experiments and the measures for the surface roughness were performed at different depth of cut. The effective mechanism of the depth of cut on the ground surface roughness was analyzed deeply. Some conclusions to influence surface roughness were also gained.


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 125-129
Author(s):  
Dicky Aprilian Nugraha ◽  
Rika Dwi Hidayatul Qoryah ◽  
Mahros Darsin

Sebuah alat kendali semprotan cutting fluid pada minimum quantity lubrication (MQL) telah berhasil dibuat. Alat yang bekerja dengan sistem Arduino ini dihubungkan dengan sensor suhu yang diletakkan pada sisi pahat dan berhasil mengendalikan kapan cutting fluid harus disemprotkan dan kapan harus berhenti. Tujuan dari penelitian ini adalah untuk mempelajari efek penggunaan alat kendali ini terhadap kekasaran permukaan pada pembubutan baja AISI 4340. Metode Taguchi L9 digunakan untuk menyusun desain eksperimen dengan variasi parameter: metode pemberian cutting fluid, kedalaman permukaan dan komposisi campuran cutting fluid. Pahat sisipan berbahan karbida digunakan untuk memesin lurus dan roughness tester digunakan untuk mengukur kekesaran permukaan hasil pembubutan. Analisis S/N ratio dilanjutkan dengan analisis varians (ANAVA) membuktikan bahwa metode MQL yang dilengkapi sistem kendali ini mampu menghasilkan rata-rata permukaan paling halus dibandingkan metode lain. Nilai kekasaran optimum sebesar 1,941 µm diperoleh pada kombinasi permesinan dengan MQL dengan sistem kendali, depth of cut 2,0 mm, dan komposisi air terhadap minyak pada cutting fluid 7:3Effect of Minimum Quantity Lubrication (MQL) Method on Surface RoughnessA device to control the spraying of cutting fluid in minimum quantity lubrication (MQL) has been initiated. This device was programmed with Ardunio and connected to a thermal sensor which is stick on the flank face of the tool. It succeeded in controlling when the cutting fluid should be sprayed and stopped. This research aim is to investigate the effect of using this device to the machined surface roughness. The Taguchi method L9 was used for designing the experiments. Variations were made on the method of applying cutting flood, depth of cut, and cutting fluid composition. Carbide insert tools were used and roughness tester was employed to measure the machined surface roughness. Analysis of S/N ratio following with analysis of variance (ANOVA) revealed that the controlled MQL cooling application results in the minimum surface roughness. The optimum surface roughness would be achieved when using MQL with temperature controller, depth of cut of 2.0 mm, and composition between water and oil for cutting fluid of 7:3.


2021 ◽  
Vol 23 (3) ◽  
pp. 31-44
Author(s):  
Sergey Bratan ◽  
◽  
Stanislav Roshchupkin ◽  
Aleksander Kharchenko ◽  
Anastasia Chasovitina ◽  
...  

Introduction. The quality parameters of products, which determine its performance and functionality, are finally formed in the finishing operations, which include the internal grinding process. In this case, the removal of material from the rough surface of the workpiece occurs due to the presence of several simultaneously running random processes of shaping, occurring during the contact of the grinding wheel and the workpiece. A probabilistic theoretical approach is used to simulate grinding operations. However, for determination of radial material removal and thickness of layer with current roughness, the known models cannot be used, as it does not allow taking into account specific features of machining products made of brittle non-metallic materials. Purpose of the work. Creation of a new theoretical and probabilistic model allowing to calculate radial material removal and layer thickness, in which current roughness is distributed during grinding of brittle non-metallic materials. The aim is to investigate the regularities of brittle non-metallic material particles removal by radial removal and study the current (for the moment) roughness formed after every radial removal in the contact area. In the work, radial material removal and the layer with current roughness are determined by grinding modes, tool surface condition, workpiece and wheel dimensions, and the initial condition of the machined surface after the previous contact. The research methods are mathematical and physical simulation using basic probability theory, distribution laws of random variables, as well as the theory of cutting and the theory of deformable solids. Results and discussion. The developed mathematical models make it possible to trace the dimensions and shape of the contact zone when grinding holes in billets made of silicon, which are somewhat different from those known when machining billets made of metal. The proposed dependencies show that with an increase in the depth of micro-cutting, the radial material removal and the thickness of the layer with the current surface roughness increase for all values of wheel speed and workpiece speed. From the experimental values obtained, the maximum micro-cutting depth and the thickness of the layer with current surface roughness are calculated. The thickness of the said layer is compared with the experimental values obtained from the ground surface profilographs. A comparison of the calculated and experimental data indicates its compliance with almost all feed values, which confirms the adequacy of the obtained equations, which model the real process of grinding holes made of brittle non-metallic materials quite well.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 625 ◽  
Author(s):  
Yanjun Lu ◽  
Wang Luo ◽  
Xiaoyu Wu ◽  
Chaolan Zhou ◽  
Bin Xu ◽  
...  

In this paper, in view of low grinding efficiency and poor ground surface quality of sapphire glass, the coarse diamond grinding wheel dressed by dry impulse electrical discharge was proposed to perform efficient and precise grinding machining of sapphire glass. The dry electrical discharge dressing technology was employed to obtain high grain protrusion and sharp micro-grain cutting edges. The influences of grinding process parameters such as wheel speed, depth of cut and feed speed on the ground surface quality, grinding force and grinding force ratio on sapphire glass were investigated, and the relationship between grinding force and ground surface quality was also revealed. The experimental results show that the grain protrusion height on the surface of a coarse diamond grinding wheel dressed by dry electrical discharge can reach 168.5 µm. The minimum line roughness Ra and surface roughness Sa of ground sapphire glass surface were 0.194 µm and 0.736 µm, respectively. In order to achieve highly efficient ground quality of sapphire glass, the depth of cut was controlled within 7 µm, and the wheel speed and feed speed were 3000–5000 r/min and 10–20 mm/min, respectively. The influences of feed speed and wheel speed on grinding force ratio were more significant, but the influence of depth of cut was little.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2293 ◽  
Author(s):  
Shuyue Zhang ◽  
Kun Zhou ◽  
Haohao Ding ◽  
Jun Guo ◽  
Qiyue Liu ◽  
...  

A three-dimensional finite element model of rail grinding was established to explore the effects of grinding passes and grinding direction on the material removal behaviour of grinding rails during the grinding process. The results indicate that as the number of grinding passes increases, a decrease in the grinding force reduces both the amount of removed rail material and the surface roughness. There is a decrease in the grinding ratio caused by the increase in the wear on the grinding wheel and the decreased removal of the rail material. When the grinding direction changes, the wear of the grinding wheel decreases, which is contrary to the increasing trend of the amount of removed rail material, the grinding ratio, the surface roughness and the grinding force.


2014 ◽  
Vol 614 ◽  
pp. 75-78
Author(s):  
Jia Liang Guan ◽  
Lei Zhu ◽  
Ling Chen ◽  
Xin Qiang Ma ◽  
Xiao Hui Zhang

The electrolytic in-process dressing (ELID) grinding technology was adopted for ultra-precision grinding experiments of SiCp/Al composites; the machined surface roughness can obtain Ra0.030μm. The experiments show that: with the grinding wheel rotation speed of 1500r/min, the grinding depth of 0.1μm, and feed speed of 2m/min and using W5 cast iron bonded diamond grinding wheel, the grinding effect can achieve optimal.


2007 ◽  
Vol 364-366 ◽  
pp. 696-700
Author(s):  
Shi Chao Xiu ◽  
Suo Xian Yuan ◽  
Chang He Li ◽  
Guang Qi Cai

According to the analysis in theory, the model of quick-point grinding is different from conventional cylindrical grinding because it is point contact between the grinding wheel and the workpiece due to the point-grinding angles in two directions and the lower grain depth of cut in the process. Especially, the grinding speed has the great effects on the micro-geometry properties and the machining precision of the workpiece surface in the process. Based on the theoretical studies on the surface roughness, the grinding experiments and the measurements of the surface roughness at high grinding speeds were performed in quick-point grinding process. Furthermore, the influencing mechanism of the grinding speed on the ground surface roughness was analyzed. Some conclusions of the grinding parameters influencing precision machining and surface integrity were deduced.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1660
Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva

The use of cutting fluid is crucial in the grinding process due to the elevated heat generated during the process which typically flows to the workpiece and can adversely affect its integrity. Considering the conventional technique for cutting fluid application in grinding (flood), its efficiency is related to certain factors such as the type of fluid, nozzle geometry/positioning, flow rate and coolant concentration. Another parameter, one which is usually neglected, is the cutting fluid temperature. Since the heat exchange between the cutting fluid and workpiece increases with the temperature difference, controlling the cutting fluid temperature before its application could improve its cooling capability. In this context, this work aimed to analyze the surface integrity of bearing steel (hardened SAE 52100 steel) after grinding with an Al2O3 grinding wheel with the cutting fluid delivered via flood technique at different temperatures: 5 °C, 10 °C, 15 °C as well as room temperature (28 ± 1 °C). The surface integrity of the workpiece was analyzed in terms of surface roughness (Ra parameter), images of the ground surface, and the microhardness and microstructure beneath the machined surface. The results show that the surface roughness values reduced with the cutting fluid temperature. Furthermore, the application of a cutting fluid at low temperatures enabled the minimization of thermal damages regarding visible grinding burns, hardness variation, and microstructure changes.


Sign in / Sign up

Export Citation Format

Share Document