The Determination of Frost Resistance on Ultra High Performance Concrete

2014 ◽  
Vol 1025-1026 ◽  
pp. 1005-1009 ◽  
Author(s):  
Michaela Kostelecká ◽  
Jiří Kolísko

The ultra high performance concrete (UHPC) has very special properties that are expressively different of normal concrete. Due to its high compression strength greater than 150 MPa, tensile strength greater than 20 MPa and improved durability, these represent significant advances in concrete technology. These materials include Portland cement, silica fume, quartz flour, fine silica sand, high-range water-reducer, water and either steel or organic fibres. Depending on the type of fibres used can influence the compressive strength. The article describes the tests of frost resistance on UHPC plates with different types of textiles armatures. The aim of the testing is describe influence of textiles armatures in UHPC matrix in extreme conditions.

1999 ◽  
Vol 5 (1) ◽  
pp. 29-40
Author(s):  
R. Krumbach ◽  
U. Schmelter ◽  
K. Seyfarth

Abstract Variable obsen>ations concerning frost resistance of high performance concrete have been made. The question arises which are the decisive factors influencing durability under the action of frost and de-icing salt. The proposed experiments are to be carried out in cooperation with F.A.- Finger - Institute of Bauhaus University Weimar. The aim of this study is to determine possible change of durability of high strength concrete, and to investigate the origin thereof. Measures to reduce the risk of reduced durability have to be found.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarmad Shafeeq Abdulqader ◽  
Asmaa Ali Ahmed ◽  
Nawfal Shihab Ahmed

Abstract Concrete Technology has been developing for more than a century. One of the most exceptional achievements in concrete technology is the evolving of Ultra-High Performance Concrete (UHPC) which has been a research focus in a wide applications diversity. In this paper, an experimental work has been carried out for investigating the transverse and longitudinal reinforcements’ variation influence on the axial capacity of UHPC columns. Eight columns (five UHPC columns and three Normal Strength Concrete (NSC) columns) have been poured and tested under a concentric axial compression load till a failure is reached. Then, the results are reported herein. The experimental results show that UHPC columns failed in a controlled manner and no concrete chips or a concrete cover spalling are observed. Also, the longitudinal reinforcements have not buckled away beyond the peak load because of the presence of the reinforcing steel fibers in UHPC. Correspondingly, the steel ties spacing proportionally affects the load carrying capacity of columns as presented hereinafter.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6944
Author(s):  
Julio A. Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13 mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests, and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


Author(s):  
Atorod Azizinamini ◽  
Sheharyar Rehmat ◽  
Amir Sadeghnejad

A feasibility study of the use of ultra-high performance concrete (UHPC) shell as a formwork is presented. The core concept of the research, developed by the first author, is prefabrication of UHPC shell which acts as a stay-in-place formwork. In the proposed approach, after transporting the UHPC shell to site, the construction of structural elements is completed by placing reinforcing cage inside the UHPC shell and post-pouring with normal concrete. The superior properties of UHPC provide excellent means to enhance the service life of bridge elements, while eliminating the need for assembling or stripping of formwork. As a proof of concept, a combination of experimental and numerical studies was conducted, results of which are reported here. Before conducting experimental work, numerical study in the form of finite element analysis was carried out to investigate performance of shell during placement of the normal concrete. To provide a baseline comparison between UHPC shell formwork and conventional methods, two test specimens were constructed and tested under three-point load setup. The shell test specimen demonstrated flexural strength, 14% greater than an equivalent normal strength concrete specimen. The UHPC shell test specimen failure occurred by debonding of shell at the interface and development of a large crack in the shell. The shell test specimen exhibited improved levels of ductility before failure. The preliminary analysis demonstrated that the idea is feasible and useful for accelerated bridge construction applications.


2010 ◽  
Vol 168-170 ◽  
pp. 1506-1508
Author(s):  
Jie Sun

The ultra high performance concrete is a new cement-based composite material with ultra-high mechanical properties, excellent durability and excellent volume stability. In this paper, research and application of the ultra high performance concrete at home and abroad at present was introduced, existing problems of the ultra high performance concrete applied to much practical engineering were pointed out. Finally, the prospects of ultra high performance concrete were analyzed and the ultra high performance concrete is inevitable result of the sustainable development of modern concrete technology.


2016 ◽  
Vol 857 ◽  
pp. 323-326
Author(s):  
Jee Sang Kim ◽  
Jong Ho Park

Researches on Ultra High Performance Concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances compared to normal concrete. This paper experimentally investigates the bond properties of reinforcements embedded in UHPC using direct pull-out tests. The specimens were prepared for various compressive strength levels of 120, 150, and 180MPa, diameters of reinforcements of 13, 16, 19, 22 and 25mm, cover to bar diameter ratios and bonded lengths. The influences of each test variable on bond properties are examined and may be a useful data for design and analysis of UHPC structures.


2020 ◽  
Vol 16 (1) ◽  
pp. 26-35
Author(s):  
Carlos Eduardo Tino Balestra ◽  
Jennifer Stephane Ozelame ◽  
Gustavo Savaris

RESUMO: A exigência de materiais com desempenho superior aos utilizados usualmente na construção civil impulsiona pesquisas que visam o desenvolvimento de novas tecnologias. Neste contexto, surgem os concretos de ultra alto desempenho reforçados com fibras (UHPFRC), que se destacam pelas elevadas resistências à compressão e à tração e maior ductilidade em relação a um concreto convencional. O presente trabalho teve como objetivo principal avaliar experimentalmente a resistência à compressão e comportamento pós ruptura de UHPFRC com diferentes tipos e dosagens de fibras, utilizando materiais disponíveis no mercado brasileiro, visando o emprego deste material nos processos construtivos atuais. A partir de um traço de concreto de ultra alto desempenho foram definidas misturas de UHPFRC com fibras de aço e de fibras de polietileno utilizando volumes de 0,5% e 1% de fibras. Os resultados obtidos foram comparados a um concreto de referência sem fibras, demonstrando que as fibras melhoram a ductilidade do concreto e provém uma resistência residual ao mesmo, sendo observados, após sua fratura, picos de recuperação graças à melhor aderência das fibras ao concreto. Além disso, para ambas as fibras, uma maior quantidade de fibras auxiliou a combater as rupturas bruscas observadas após concretos sem fibras esgotarem sua capacidade resistente. ABSTRACT: The demand for materials with higher performance than those usually used in civil construction stimulate researches aimed at the development of new technologies. In this context, ultra high performance fibers reinforced concrete (UHPFRC) stands out due to the high compressive and tensile strengths and higher ductility compared to conventional concrete. The present work had as main objective to evaluate experimentally the compressive strength and post - rupture behavior of UHPFRC with different types and dosages of fibers, using materials available in Brazil, aiming the use of these material in the current constructive processes. UHPFRC mixtures with steel fibers and polyethylene fibers using 0.5% and 1% fiber volumes were defined from an ultra high performance concrete mixture. The results obtained were compared to a reference concrete without fibers, demonstrating that the fibers improve the ductility of the concrete and provide a residual resistance after the exemplar fracture, recovery peaks due to the better adhesion of the fibers to the concrete. In addition, for both fibers, a greater amount of fibers helped to avoid sudden ruptures observed after concrete without fibers reached their resistant capacity.


Author(s):  
Julio Paredes ◽  
Jaime C. Gálvez ◽  
Alejandro Enfedaque ◽  
Marcos G. Alberti

This paper seeks to optimize the mechanical and durability properties of ultra-high performance concrete (UHPC). To meet this objective, concrete specimens were manufactured by using 1,100 kg/m3 of binder, water/binder ratio 0.20, silica sand and last generation of superplasticizer. Silica fume, metakaolin and two types of nano silica were used for improving the performances of the concrete. Additional mixtures included 13mm long OL steel fibers. Compressive strength, electrical resistivity, mercury intrusion porosimetry tests and differential and thermogravimetric thermal analysis were carried out. The binary combination of nano silica and metakaolin, and the ternary combination of nano silica with metakaolin and silica fume, led to the best performances of the UHPC, both mechanical and durable performances.


Sign in / Sign up

Export Citation Format

Share Document