Structure, Magnetic Properties and Defects Distribution of Mn0.5Zn0.5LaxFe2-xO4 Nanocrystals

2010 ◽  
Vol 105-106 ◽  
pp. 706-708
Author(s):  
Li Qun Wang

La-substitution Mn-Zn ferrite nanocrystals, Mn0.5Zn0.5LaxFe2-xO4 (x=0.00, 0.05, 0.10, 0.15, 0.20) were prepared by sol-gel process. X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and positron annihilation lifetime spectroscopy (PALS) studies were carried out. The result of XRD suggests that the mean grain size decreases from 63.8 nm to 44.6 nm with the increment of La-substitution concentration from x=0.00 to 0.20. The VSM measurement shows that the saturation magnetization (MS) increases in the range of x<0.10, then it drastically decreases in the range of 0.10<x<0.20. At last, defects property is discussed using PALS.

2014 ◽  
Vol 664 ◽  
pp. 75-79
Author(s):  
Beh Hoe Guan ◽  
Muhammad Hanif Zahari ◽  
Lee Kean Chuan

This study investigates the influence of calcination temperatures on the magnetic properties of Ni0.5Zn0.5Fe2O4(Ni-Zn) ferrites.Ni-Zn ferrite with the chemical formula Ni0.5Zn0.5Fe2O4was prepared from their respective nitrate salts through the sol-gel method. The resulting ferrites were characterized using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). Single phased Ni0.5Zn0.5Fe2O4 was obtained at all calcination temperatures.FESEM Micrographs reveals an increase in the grain size with the increase of the calcination temperature. Consequently, the magnetic saturation of the samples were found to increase with each increase in the calcination temperature where the highest value obtained is 70.58 emu/g for the samples calcined at 1000°C.


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2002 ◽  
Vol 737 ◽  
Author(s):  
R.E. Melgarejo ◽  
M.S. Tomar ◽  
A. Hidalgo ◽  
R.S. Katiyar

ABSTRACTNd substituted bismuth titanate Bi4-xNdxTi3O12 were synthesized by sol-gel process and thin films were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. Thin films, characterized by X-ray diffraction and Raman spectroscopy, shows complete solid solution up to the composition x < 1. Initial results indicate that the ferroelectric polarization increases with increasing Nd content in the film with 2Pr = 50μC/cm2 for x = 0.46, which may have application in non-volatile ferroelectric memory devices.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


2010 ◽  
Vol 93-94 ◽  
pp. 231-234
Author(s):  
B. Hongthong ◽  
Satreerat K. Hodak ◽  
Sukkaneste Tungasmita

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.


2014 ◽  
Vol 543-547 ◽  
pp. 3741-3744
Author(s):  
Quan Jing Mei ◽  
Cong Ying Li ◽  
Jing Dong Guo ◽  
Gui Wang ◽  
Hai Tao Wu

The ecandrewsite-type ZnTiO3was successfully synthesized by the aqueous sol-gel method using TiO2dioxide and zinc nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized ZnTiO3powders were successfully obtained at 850 °C with particle size ~50 nm. By comparison, the aqueous sol-gel process was the most effective and least expensive technique used for the preparation of ZnTiO3nanopowders.


2007 ◽  
Vol 546-549 ◽  
pp. 2007-2010
Author(s):  
Gao Yang Zhao ◽  
Huang Li Zhang ◽  
Ren Zhong Xue ◽  
Yuan Qing Chen ◽  
Li Lei

precursor solution was prepared using barium trifluoroacetae (Ba-TFA) and non-fluorine yttrium (Y) and copper (Cu) organic salts. The precursor solution was modified by benzalacetone (BzAcH), in which the Cu2+ were chelated with BzAcH, which preventing the loss of Cu in the pyrolysis process. Dense YBCO superconducting films with smooth surface, which confirmed by scanning electron microscopy (SEM), were repeatedly obtained through sol-gel process. X-ray diffraction (XRD) 2θ scanning and φ scanning indicated that the as-prepared YBCO films had good c-axis texture. YBCO films with superconducting transition temperature (TC) above 89K were obtained.


2013 ◽  
Vol 538 ◽  
pp. 142-145 ◽  
Author(s):  
X.F. Chen ◽  
J. Li ◽  
T.T. Feng ◽  
Y.S. Jiang ◽  
X.H. Zhang ◽  
...  

The forsterite-structure Mg2SiO4 was successfully synthesized by the aqueous sol-gel method using Si sols dioxide and magnesium nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscope (SEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized Mg2SiO4 powders were successfully obtained at 850 °C with particle size of 60~80 nm.


Sign in / Sign up

Export Citation Format

Share Document