Preparation of Hydrophilic-Oleophobic Antireflective Coatings with High Transmittance

2014 ◽  
Vol 1051 ◽  
pp. 81-84
Author(s):  
Shuang Cai ◽  
Yu Lu Zhang ◽  
Hong Wei Yan ◽  
Hai Bing Lv ◽  
Bo Jiang

In this study, hydrophilic-oleophobic antireflective coatings with high transmittance were prepared via simplely mixing the base-catalyzed TEOS and acid-catalyzed MTES with different weight ratio. The refractive index of the AR coatings increase continuously from 1.23 to 1.44. When the weight ratio of acid-catalyzed MTES reached 60%, a hydrophilic-oleophobic antireflective coatings with a high transmittance of 99.09% can be obtained. The water contact angle and the oil contact angle of the coating are 113.8o and 74.4o, which can effectively prevent the absorption of water and polar organic molecules from the environment.

2013 ◽  
Vol 423-426 ◽  
pp. 1159-1163 ◽  
Author(s):  
Jing Feng ◽  
Ling Min Liao ◽  
Liang Chen ◽  
Cheng Jing Xiao ◽  
Shan Feng Wang ◽  
...  

Its of great importance to develop various outstanding protective concrete coating with favorable impermeability and crack-resistance properties. In this study, the polyaspartic ester polyurea was prepared, and its adhesion to concrete was evaluated by universal testing machine and SEM technology. The optimal formula of polyurea was obtained by investigating the effects of each component's content on the bonding strength to concrete and the water contact angle. Subsequently, the mechanical and surface properties of these polyurea coating were tested. The results showed that the polyurea was obtained by the following formula: the weight ratio of A1/A2/B was 0.612/ 0.408/ 1, and the fluoride filler content was 3%. The coating exhibited excellent mechanical properties, such as high bonding strength (4.5 MPa), sufficient tensile strength (16.4 MPa) and elongation at break (456%). Meanwhile, the coating showed a hydrophobic surface with its water contact angle of 105°. Hence, the polyurea coating is likely to improve the crack-resistance and impermeability properties of hydraulic concrete. Till now, the polyurea coating has been applied to the concrete repair and protection engineering in the South-to-North Water Transfers Project.


2011 ◽  
Vol 391-392 ◽  
pp. 505-510
Author(s):  
Yan Pang ◽  
Yao Chen ◽  
Qi Qiu ◽  
Fang Wang ◽  
Zhang Tao

Optically transparent hydrophobic inorganic-organic hybrid sols was obtained employing Tetraethylorthosilicate (TEOS), Methyltriethoxysilane (MTES), and Heptadecafluoro-1, 1, 2, 2-tetradecyl)trimethoxysilane (FAS), with nitric acid as catalyst. Hybrid coating was dip coated on glass slides. The results showed that the water contact angle of MTES modified SiO2 coating was only 105° . As the weight ratio FAS varied from 0 to 8 wt.%, the water contact angle reached as high as 116.5°. The coated glass presented transmittance of 92%, 2% higher than the non-coated ones. The increase in transmittance suggested an antireflective effect of the hybrid coating. With further SEM characterization of the surface morphology, we finally obtained the optimized optically transparent hydrophobic hybrid coating with the MTES/TEOS_as 1/1(molar ratio) and FAS as 2 wt.%.


2013 ◽  
Vol 423-426 ◽  
pp. 443-447 ◽  
Author(s):  
Wen Wen Dou ◽  
Yu Chao Niu ◽  
Xiang Ju Liu ◽  
Xiao Li Wang ◽  
Yong Xu

Antireflective coatings with stable hydrophobicity for solar tube were prepared via sol-gel method and hexamethyldisilazane (HMDS) treatment. The coatings have a high porosity, groove-like surface morphology and a big static water contact angle. As a result, the coatings exhibit high transmittance even in high humidity environments. The transmittance peak can reach up to 99.02% which increased by 7% compared with the substrate and the wavelength band increased by more than 5% is from 438nm to 1000nm. After prolonged exposure to strong ultraviolet (UV) irradiation, the static water contact angle of the HMDS treated antireflective coatings decreased very small from 102o to 98o. In addition, the low-temperature tests showed the contact angle did not decline even at-50°C. The results suggest that the coatings prepared in present paper have stable hydrophobic and antireflective performance in the environment of strong UV radiation and low temperature.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Author(s):  
Wei Lee Lim ◽  
Shiplu Roy Chowdhury ◽  
Min Hwei Ng ◽  
Jia Xian Law

Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200–800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue’s collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.


2016 ◽  
Vol 879 ◽  
pp. 2524-2527
Author(s):  
Masazumi Okido ◽  
Kensuke Kuroda

Surface hydrophilicity is considered to have a strong influence on the biological reactions of bone-substituting materials. However, the influence of a hydrophilic or hydrophobic surface on the osteoconductivity is not completely clear. In this study, we produced super-hydrophilic and hydrophobic surface on Ti-and Zr-alloys. Hydrothermal treatment at 180 oC for 180 min. in the distilled water and immersion in x5 PBS(-) brought the super-hydrophilic surface (water contact angle < 10 (deg.)) and heat treatment of as-hydrothermaled the hydrophobic surface. The osteoconductivity of the surface treated samples with several water contact angle was evaluated by in vivo testing. The surface properties, especially water contact angle, strongly affected the osteoconductivity and protein adsorbability, and not the surface substance.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2058
Author(s):  
Kyutae Seo ◽  
Hyo Kang

We synthesized a series of polystyrene derivatives modified with precursors of liquid crystal (LC) molecules via polymer modification reactions. Thereafter, the orientation of the LC molecules on the polymer films, which possess part of the corresponding LC molecular structure, was investigated systematically. The precursors and the corresponding derivatives used in this study include ethyl-p-hydroxybenzoate (homopolymer P2BO and copolymer P2BO#, where # indicates the molar fraction of ethylbenzoate-p-oxymethyl in the side chain (# = 20, 40, 60, and 80)), n-butyl-p-hydroxybenzoate (P4BO), n-hexyl-p-hydroxybenzoate (P6BO), and n-octyl-p-hydroxybenzoate (P8BO). A stable and uniform vertical orientation of LC molecules was observed in LC cells fabricated with P2BO#, with 40 mol% or more ethylbenzoate-p-oxymethyl side groups. In addition, the LC molecules were oriented vertically in LC cells fabricated with homopolymers of P2BO, P4BO, P6BO, and P8BO. The water contact angle on the polymer films can be associated with the vertical orientation of the LC molecules in the LC cells fabricated with the polymer films. For example, vertical LC orientation was observed when the water contact angle of the polymer films was greater than ~86°. Good orientation stability was observed at 150 °C and with 20 J/cm2 of UV irradiation for LC cells fabricated with the P2BO film.


Sign in / Sign up

Export Citation Format

Share Document