Kinetics Study of Thermal Degradation of Epoxy Resins Modified with 2-(Diphenylphosphinyl)-1, 4-Benzenediol

2014 ◽  
Vol 1053 ◽  
pp. 240-244
Author(s):  
Xiu Juan Tian ◽  
Zhong Wei Wang ◽  
Jun Gao

Phosphorus-containing epoxy resins with different phosphorus content were obtained from 2-(Diphenylphosphinyl)-1, 4-benzenediol (DPO-HQ) and biphenyl-A epoxy resin by crosslinking with 4, 4’-diaminodiphenylsulfone (DDS). The thermal degradation kinetics of the modified epoxy resins containing different phosphorus content were investigated by dynamic thermogravimetric analysis (TGA) under air atmosphere with different heating rate. The degradation of epoxy resins containing flame retardant components were found to be changed. The additive of phosphorus increases the carbon residue and improves the thermal stability at elevated temperature. The kinetics of thermal degradation was evaluated by Kissinger method and Flynn-Wall-Ozawa method, which do not require knowledge of the reaction mechanism. The results showed that the activation energies at lower degree of the degradation decreased with increasing of phosphorus content, while increased at higher degree of the degradation.

2014 ◽  
Vol 1053 ◽  
pp. 263-267 ◽  
Author(s):  
Xiu Juan Tian

Thermal stability and thermal degradation kinetics of epoxy resins with 2-(Diphenylphosphinyl)-1, 4-benzenediol were investegated by thermogravimetric analysis (TGA) at different heating rates of 5 K/min, 10 K/min, 20 K/min and 40 K/min. The thermal degradation kinetic mechanism and models of the modified epoxy resins were determined by Coast Redfern method.The results showed that epoxy resins modified with the flame retardant had more thermal stability than pure epoxy resin. The solid-state decomposition mechanism of epoxy resin and the modified epoxy resin corresponded to the controlled decelerating ځ˽̈́˰̵̳͂͆ͅ˼˰̴̱̾˰̸̵̈́˰̵̸̳̱̹̽̾̓̽˰̶̳̹̾̈́̿̾̓ͅ˰̶˸ځ˹˰̵̵͇͂˰̃˸́˽ځ˹2/3. The introduction of phosphorus-containing flame retardant reduced thermal degradation rate of epoxy resins in the primary stage, and promote the formation of carbon layer.


2018 ◽  
Author(s):  
Abdullah Al-Yami ◽  
Vikrant Wagle ◽  
Walmy Cuello Jimenez ◽  
Paul Jones

2011 ◽  
Vol 284-286 ◽  
pp. 1917-1924 ◽  
Author(s):  
Jia Chun Zhong ◽  
Jian Yang ◽  
Hai Long Tang ◽  
Xiao Bo Liu

The kinetics of the thermal degradation of Polyarylene ether natriles (PEN) (crosslinked and uncrosslinked) were investigated by thermogravimetric analysis (TGA). The corresponding kinetic parameters of PEN were determined using Flynn–Wall–Ozawa method and Friedman method, respectively. Satava method was also used to discuss the probable degradation mechanisms of PEN. The results showed that the activation energy obtained from Flynn–Wall–Ozawa method was in good agreement with the value obtained from Friedman method. The solid-state decomposition mechanisms of PEN and crosslinked PEN were A2 type (nucleation and growth) and R2 type (phase boundary controlled reaction), respectively. The activation energy and initial decomposition temperature of crosslinked PEN were higher than that of PEN, which indicates that crosslinking treatment is effective to enhance the thermal stability of PEN.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1246 ◽  
Author(s):  
Samson M. Mohomane ◽  
Tshwafo E. Motaung ◽  
Neerish Revaprasadu

Sign in / Sign up

Export Citation Format

Share Document